

ENERGIE-NUTZUNGSPLAN

Herausgeber

für den Landkreis Fürstenfeldbruck Landratsamt Fürstenfeldbruck, vertreten durch Landrat Thomas Karmasin, Münchner Straße 32 82256 Fürstenfeldbruck www.lra-ffb.de

Fachliche Begleitung und Projektmanagement

Landratsamt Fürstenfeldbruck
Klimaschutzmanagement
Dr.-Ing. Małgorzata Kroban
www.lra-ffb.de/bau-umwelt/klimaschutz

Bearbeitung

ENIANO GmbH Erhardtstr.6 80469 München www.eniano.com

Gestaltung und Druck

Landratsamt Fürstenfeldbruck

Bildnachweis:

Titelseite: Gemeinde Althegnenberg

Abbildungen, Diagramme, Karten: © Landratsamt Fürstenfeldbruck

Stand: Mai 2025

Vorwort

Liebe Bürgerinnen und Bürger,

die Energiewende und der Klimaschutz gehören zu den zentralen Herausforderungen unserer Zeit. Als Gemeinde Althegnenberg, die im Landkreis Fürstenfeldbruck mit einem Waldanteil von beeindruckenden 41% die waldreichste Kommune darstellt, tragen wir eine besondere Verantwortung. Der Erhalt unseres Waldes ist nicht nur wichtig für die Biodiversität, sondern auch ein entscheidender Faktor zur Erreichung unserer Klimaziele. Daher liegt es mir am Herzen, die Unabhängigkeit von fossilen Energieträgern zu fördern und somit die hohe Lebensqualität, die unser schöner Ort bietet, auch für zukünftige Generationen zu sichern.

Bereits seit vielen Jahren engagiert sich unsere Gemeinde aktiv in der Nutzung erneuerbarer Energien. Ein Beispiel hierfür ist die frühzeitige Installation von Photovoltaikanlagen auf den Dächern unserer öffentlichen Gebäude. Bereits 1998 wurde auf dem Rathaus eine Anlage mit 1,1 kWp errichtet, gefolgt von einer Erweiterung im Jahr 2010 auf 9,62 kWp. Weitere Anlagen wurden u.a. auf den Dächern der Schule (54,39 kWp), der Kläranlage (10 kWp) und des Kinderhauses (50,49 kWp) installiert. Zudem ging 2006 eine Freiflächenphotovoltaikanlage mit 2,2 MWp ans Netz, und 2020 folgte eine AGRI PV-Anlage mit 1,8 MWp. Unsere Innovationskraft zeigt sich zudem durch die Integration einer Hackschnitzelheizung im Sportzentrum im Jahr 2004, die Wärme für das Kinderhaus und die Grundschule liefert.

Doch wir ruhen uns nicht auf unseren Erfolgen aus. Mit neuen Technologien setzen wir zusätzliche Projekte in Gang, beispielsweise die Modernisierung unserer Heizungsanlagen mithilfe von Power2Heat-Techniken. Die Energiewende erfordert gemeinsames Handeln: Während wir auf dem Land Platz für Photovoltaik- und Windkraftanlagen haben, ermöglichen es städtische Strukturen, Kommunale Wärmeplanung leichter umzusetzen. Durch unseren Beitritt zur Sonnensegler Energiegenossenschaft streben wir an, trotz begrenzter finanzieller Mittel weitere Projekte zu realisieren und so gezielt an unseren Klimaschutzzielen zu arbeiten.

Für die Zukunft wünsche ich mir, dass wir weiterhin gemeinsam an einem Strang ziehen, um den Weg zur Unabhängigkeit von fossilen Energieträgern erfolgreich zu meistern. Lassen Sie uns zusammen für eine nachhaltige und lebenswerte Zukunft eintreten.

Die Energiewende und der Klimaschutz betreffen uns alle!

Rainer Spicker

There file

Erster Bürgermeister

Gemeinde Althegnenberg

Inhaltsverzeichnis

1 2		•	sanlass und Bearbeitungskonzeptsanalyse	
	2.1.		rgieinfrastruktur	
	2.2.	Stroi	msektor: Erzeugungsanlagen, Speicher und Stromnetz	4
	2.3.		mesektor: Wärmenetze und dezentrale Erzeugungsanlagen	
	2.4.	Geb	äudebestand und Wärmenachfrage	10
	2.4	l .1.	Siedlungsstruktur und Baualtersklassen	10
	2.4	1.2.	Wärmebedarfsberechnung	11
	2.5.	Verk	ehr	13
	2.6.	Unte	ernehmensumfrage	13
3	. En	ergie-	und Treibhausgasbilanz	14
	3.1.	Meth	nodik und Datengrundlagen	14
	3.2.	Erge	ebnisse der Endenergie- und Treibhausgasbilanz	17
	3.3.	Verg	leich von regenerativer Erzeugung und Gesamtverbrauch	19
	3.4.	Die (Gemeinde Althegnenberg im überregionalen Vergleich	20
4	. Po		lanalyse	
	4.1.		nzialbegriffe	
	4.2.	Pote	nziale zur Energieeinsparung und Steigerung der Energieeffizienz	22
	4.2	2.1.	Sektor Strom	22
	4.2	2.2.	Sektor Wärme	23
	4.3.	Pote	nziale zur Energieerzeugung	26
	4.3	3.1.	Photovoltaik auf Dachflächen	26
	4.3	3.2.	Solarthermie	28
	4.3	3.3.	Photovoltaik auf Freiflächen	30
	4.3	3.4.	Wasserkraft	31
	4.3	3.5.	Windkraft	31
	4.3	3.6.	Biomasse	33
	4.3	3.7.	Biogas	34
	4.3	3.8.	Abwärme	38
	4.3	3.9.	Abwasserwärme	38
	4.3	3.10.	Umweltwärme aus Oberflächengewässern	44
	4.3	3.11.	Kraft-Wärme-Kopplung	45

	4.3.12.	Oberflächennahe Geothermie	45
	4.3.13.	Tiefe Geothermie	52
	4.4. Pote	enzial Wärmenetze und Wärmeverbundgebiete	55
5.	Entwicklu	ungsszenarien-Tool	57
		menkatalog	
7.	Zusamm	enfassung	82

1. Planungsanlass und Bearbeitungskonzept

Der Klimawandel stellt eine der größten Herausforderungen der heutigen Zeit dar. Um diesen und dessen bereits heute spürbare Auswirkungen zu begrenzen, ist eine erhebliche Reduktion der Treibhausgasemissionen über alle Sektoren hinweg binnen der nächsten Jahrzehnte erforderlich. Die Bundesregierung hat sich das Ziel gesetzt, in Deutschland Klimaneutralität bis zum Jahr 2045 zu erreichen. Das CO₂-Äquivalent der Treibhausgasemissionen je Einwohner soll dabei bis zum Jahr 2030 um mindestens 65 % und bis 2040 um 88 % gesenkt werden¹. Das Bundesland Bayern will diese Zielstellung bereits im Jahr 2040 erreichen². Hierfür sind tiefgreifende Transformationen in fast allen Lebensbereichen notwendig. Der Energiebedarf und dessen Deckung ist für einen großen Teil der Treibhausgasemissionen (THG-Emissionen) verantwortlich. Während unvermeidliche THG-Emissionen durch natürliche bzw. technische Senken ausgeglichen werden müssen, ist der Einsatz regenerativer Energiequellen und die Reduzierung des Energiebedarfs zur Erreichung der Klimaschutzziele unumgänglich. Da Erzeugung und Verbrauch von Energie durch aktuelle Tendenzen zur Dezentralisierung des Energiesystems zunehmend auf lokaler Ebene stattfinden, haben kommunale Entscheidungen einen immer wesentlicheren Einfluss auf die Gestaltung und Umsetzung der Energiewende. Die positiven Auswirkungen von Klimaschutzmaßnahmen gehen dabei weit über deren Klimaschutzwirkung hinaus. Der Freistaat Bayern bzw. das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) fördert daher konsequent Maßnahmen der Energieeinsparung, der Nutzung erneuerbarer Energien sowie der Verbesserung der Energieeffizienz. Dies erfolgt mitunter über die Richtlinie zur Förderung von Energiekonzepten und kommunalen Energienutzungsplänen, über die auch gegenständlicher Energienutzungsplan gefördert ist.

Die zahlreichen Aktivitäten im Landkreis Fürstenfeldbruck zum Ausbau regenerativer Energien wie Freiflächen-Photovoltaik, Windkraft und Tiefengeothermie zeigen eine klare Aufbruchsstimmung hin zu einer nachhaltigen und zukunftsstärkenden Energieversorgung. Diese und weitere Klimaschutzaktivitäten zeigen politischen Willen, das Thema innerhalb des Landkreises und seiner Kommunen proaktiv zu behandeln und Maßnahmen zum Klimaschutz umzusetzen. Mit der Entscheidung, einen Energienutzungsplan (ENP) zu erstellen, setzt der Landkreis ein starkes Signal, diesen Weg strategisch und strukturiert fortzusetzen. Mit der Erstellung des Energienutzungsplans sollen zwei höchst prioritäre Maßnahmen aus dem CO₂-Aktionsplan³ aus dem Jahr 2020 des Landkreises Fürstenfeldbruck, umgesetzt werden: Die Erstellung eines Wärmekonzeptes für den Landkreis sowie ein Konzept der erneuerbaren Strombereitstellung im Landkreis.

Der Energienutzungsplan ist ein strategisches und informelles Planungsinstrument. Neben der bestehenden Energieinfrastruktur zeigt ein ENP die aktuelle Energiebedarfs- und Versorgungssituation. Einen weiteren wichtigen Bestandteil stellen die Potenzialanalysen zur

¹ Bundes-Klimaschutzgesetz (KSG)

² Bayerisches Klimaschutzgesetz (BayKlimaG)

³ Landratsamt Fürstenfeldbruck (Hrsg.) (2020): CO2 – Aktionsplan. Online verfügbar unter: https://www.lra-ffb.de/bau-umwelt/klimaschutz/klimaschutzkonzept/co2-aktionsplan (zuletzt abgerufen: 17.03.2025).

Erzeugung erneuerbarer Energie, zur Energieeinsparung sowie zur Effizienzsteigerung dar. Letztendlich soll ein ENP zur Förderung einer nachhaltigen Energieinfrastruktur beitragen, wobei der Schwerpunkt auf dem Einsatz erneuerbarer Energien liegt. Ergebnis eines ENPs sind spezifische Maßnahmenvorschläge, welche als politische Entscheidungsgrundlage dienen und fachliche Basis für anschließende Umsetzungsprozesse darstellen.

Die Umsetzung eines Energienutzungsplans kann auf lokaler Ebene in unterschiedlichen Bereichen eine positive und langfristige Wirkung entfalten:

1. Regionale Wertschöpfung stärken

Durch den Ausbau erneuerbarer Energien und die Förderung regionaler Projekte bleibt ein größerer Anteil der Wertschöpfung des energiewirtschaftlichen Sektors in der Region. Lokale Unternehmen profitieren, neue Arbeitsplätze können geschaffen werden und die wirtschaftliche Resilienz der Städte und Gemeinden im Landkreis wird gestärkt. Die anfallende Gewerbesteuer durch erneuerbare Energieprojekte oder die Kommunalabgabe nach §6 EEG⁴ sind nur zwei Beispiele, wie auch der Haushalt der Gemeinde von der Energiewende profitieren kann.

2. Unabhängigkeit von Energiemärkten und volatilen Energiepreisen

Angesichts globaler Unsicherheiten und schwankender Energiepreise bietet der ENP die Chance, die Energieversorgung stärker auf lokale, erneuerbare Ressourcen umzustellen. Das erhöht die Versorgungssicherheit und schützt vor Preisschwankungen auf den Energiemärkten.

3. Standortfaktor für Gewerbe und klimaneutrale Produktion

Eine zukunftsorientierte Energiepolitik macht den Landkreis und seine Kommunen für Gewerbetreibende attraktiv und liefert entscheidende Standortvorteile. Unternehmen profitieren von einer verlässlichen und nachhaltigen Energieversorgung, was die Standortbindung erhöht und den Landkreis im Kontext des Wettbewerbs mit anderen Standorten stärkt.

4. Beitrag zu globalen Klimazielen und lokaler Lebensqualität

Die im ENP identifizierten Maßnahmen, leisten in ihrer Umsetzung einen direkten Beitrag zu den übergeordneten Klimaschutzzielen und verbessern gleichzeitig die Lebensqualität vor Ort, z.B. durch eine Reduktion von Emissionen, besserer Luftqualität und einer allgemeinhin nachhaltigeren Entwicklung.

5. Anerkennung als kommunaler Wärmeplan auf Antrag der Kommune

Mit der Umsetzung des Wärmeplanungsgesetzes (WPG)⁵ in Bayern am 02.01.2025 sind Gemeinden die planungsverantwortliche Stelle geworden und verpflichtet, die kommunale

⁴ § 6 Finanzielle Beteiligung der Kommunen am Ausbau. Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG 2023)

⁵ Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz – WPG). 20.12.2023 (BGBI.2023 I Nr.394)

Wärmeplanung nach dem Wärmeplanungsgesetz durchzuführen. Ein bayerischer Energienutzungsplan kann sowohl als Grundlage für die kommunale Wärmeplanung sowie auch unter bestimmten Bedingungen⁶ als bestandsgeschützter Wärmeplan dienen.

⁶ 1) am 01.01.2024 lag ein Beschluss/Entscheidung über die Durchführung des ENPs vor 2) spätestens bis zum Ablauf des 30.06.2026 wird der ENP erstellt und veröffentlicht 3) die dem WP zugrundeliegende Planung ist mit den Anforderungen des WPG im Wesentlichen vergleichbar.

2. Bestandsanalyse

Die Bestandsanalyse bildet die Grundlage für den Energienutzungsplan und liefert eine detaillierte Übersicht über den aktuellen Energieverbrauch, die Energieerzeugung vor Ort sowie die vorhandenen Energieinfrastrukturen.

2.1. Energieinfrastruktur

In der Gemeinde Althegnenberg sind die in nachfolgender Tabelle aufgeführten Strom- und Gasnetzbetreiber sowie Wärmenetzbetreiber tätig.

Tabelle 1: Netzbetreiber der Energieinfrastruktur in der Gemeinde Althegnenberg.

Netzbetreiber Strom	Netzbetreiber Gas	Netzbetreiber Wärmenetz	
Bayernwerk Netz GmbH	kein Gasnetz	Kommune	
Stadtwerke Fürstenfeldbruck GmbH	-	Privat	

2.2. Stromsektor: Erzeugungsanlagen, Speicher und Stromnetz

Im Rahmen des Projektes werden Stromerzeugungsanlagen erfasst. Im Bereich der erneuerbaren Energien werden zum Startzeitpunkt des Projektes (Januar 2024) neben innerhalb Gemeinde Althegnenberg Dachphotovoltaik der Freiflächenphotovoltaikanlagen zur regenerativen Stromerzeugung genutzt. Abbildung 1 zeigt die identifizierten Standorte der beschriebenen Energieerzeugungsanlagen. Kleinere Anlagenstandorte sind aufgrund datenschutzrechtlicher Einschränkungen nicht in der Karte dargestellt. Außerdem ist die Stromnetzinfrastruktur der Mittel-, Hochund Höchstspannungsebene mit dargestellt.

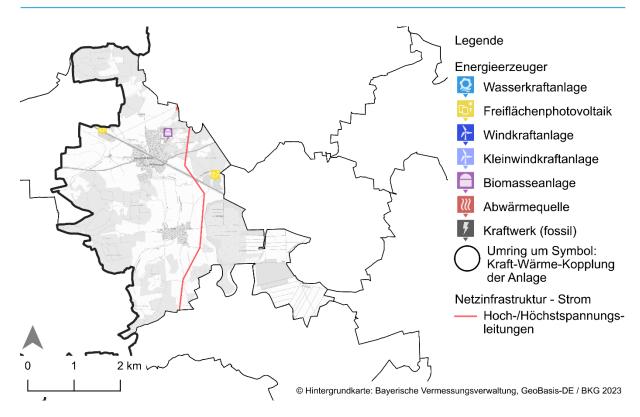


Abbildung 1: Bestehende Energieinfrastruktur im Stromsektor.7

Neben den größeren Kraftwerksstandorten tragen Dach-Photovoltaikanlagen einen erheblichen Teil zur regenerativen Stromerzeugung in der Kommune bei. In der Gemeinde Althegnenberg sind etwa 13 % der Gebäude bereits mit Photovoltaikanlagen bestückt. Abbildung 2 zeigt den jährlichen Zubau der Photovoltaikleistung seit dem Jahr 2000 bis Ende 2023, farblich differenziert nach Sektor. In den letzten Jahren hat ein erheblicher Zubau im Bereich der Dach-Photovoltaik stattgefunden. Zurückzuführen ist diese Entwicklung auf ein gestiegenes Umweltbewusstsein in der Bevölkerung in den Jahren 2020 bis 2022, einen zunehmenden Umstieg auf E-Mobilität und stark gesunkene Modulpreise⁸. Seit 2022 verstärkt die Energiekrise aufgrund des Angriffskrieges von Russland auf die Ukraine den Trend um ein Vielfaches. Der private Sektor trägt bisher den Großteil zum Zubau von Dach-Photovoltaik bei, gefolgt vom Sektor Landwirtschaft der vor allem zwischen 2009 und 2011 einen hohen Zubau ermöglich hat. Zusammenfassend lässt sich feststellen, dass die Zubauraten von Dach-Photovoltaik im Verwaltungsgebiet der durchschnittlichen Entwicklung im Bundesgebiet folgen.

⁷ Die Legende kann Symbole enthalten, die im aktuellen Kartenausschnitt nicht vorkommen.

⁸ Bundesverband Solarwirtschaft e.V. (Hrsg.) (2021): Solarboom auf privaten Dächern (Link, zuletzt abgerufen: 21.11.2024).

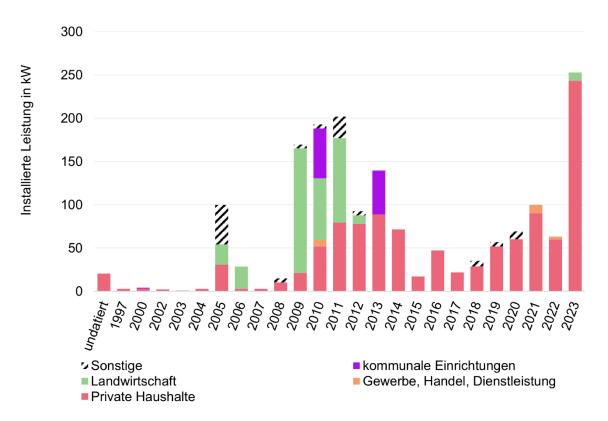


Abbildung 2: Jährlicher Zubau der Dachphotovoltaik nach Sektor bis 2023 (Datenquelle: Marktstammdatenregister, Stand Februar 2024).

Für eine Einordnung der regional erzeugten Strommengen ist die Relation zum Verbrauch innerhalb des Verwaltungsgebietes hilfreich. Dieser lag in der Gemeinde Althegnenberg im Bilanzjahr 2022 bei 3.790 MWh. In Tabelle 2 sind die erneuerbar erzeugten Strommengen innerhalb des Verwaltungsgebietes nach Erzeugungsart aufgelistet und in Relation zum Gesamtverbrauch gesetzt.

Tabelle 2: Erneuerbare Stromerzeugung und Anteil am Gesamtverbrauch.

Erzeugungsanlage	Erzeugte Stro	mmenge	Anteil am Stromverbrauch	
Wasserkraft	0	MWh	0	%
Biogas-/Biomasseanlagen	0	MWh	0	%
Photovoltaik (Dach + FFPV)	4.928	MWh	130	%
Windkraft	0	MWh	0	%
Abfallheizkraftwerk	0	MWh	0	%

Neben den Erzeugungsanlagen wurde des Weiteren der Speicherzubau in den Kommunen des Landkreises analysiert. Das Marktstammdatenregister weist bis Ende 2023 knapp 57 Stromspeicher in der Gemeinde Althegnenberg aus.

Die folgende Abbildung zeigt den jährlichen Zubau an Speicherleistung. Während in den Jahren bis 2018 nur vereinzelt Stromspeicher in Betrieb genommen wurden, erhöht sich deren

Zubaurate ab 2020 merklich. In den Jahren 2022 und 2023 vervielfacht sich jeweils die Zubauleistung aus dem vorangehenden Jahr.

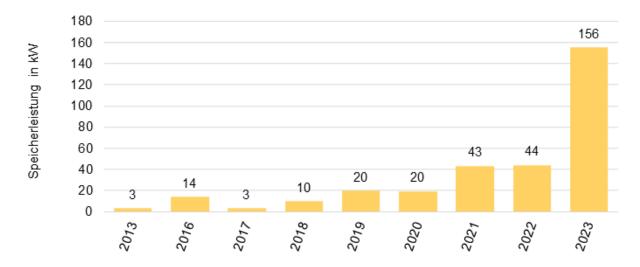


Abbildung 3: Jährlicher Zubau der Stromspeicherleistung bis 2023 (Datenquelle: Marktstammdatenregister).

2.3. Wärmesektor: Wärmenetze und dezentrale Erzeugungsanlagen

Die Wärmeinfrastruktur umfasst sowohl netzgebundene als auch dezentrale Systeme zur Bereitstellung von Wärmeenergie. Netzgebundene Lösungen wie Fernwärmenetze ermöglichen die zentrale Erzeugung und den Transport von Wärme zu den Verbrauchern, während Gasnetze die Heizanlagen der einzelnen Gebäude lediglich mit dem Energieträger versorgen. Demgegenüber stehen dezentrale Systeme, wie Holzöfen, Pelletheizungen oder Wärmepumpen. Insbesondere für dezentrale Wärmeerzeuger sind aus Datenschutzgründen keine Standortinformationen verfügbar, weshalb sie nicht in der Karte (Abbildung 4) dargestellt werden.

Gasnetz

Die Gemeinde Althegnenberg verfügt über kein Gasnetz. Es verläuft jedoch eine Gashochdruckleitung der bayernnets GmbH durch das Verwaltungsgebiet. Etwa 10 % des gesamten Wärmeverbrauchs werden in der Gemeinde Althegnenberg durch Flüssiggas gedeckt.

Fern- / Nahwärmenetze

Es sind zwei kleinere Gebäudenetze, die von der Kommune bzw. privaten Gebäudebesitzern betrieben werden, vorhanden. Als Hauptwärmeträger dient Biomasse. Zum Bilanzjahr 2022 wurden dadurch 6 % des Gesamtwärmebedarfs über Nah- bzw. Fernwärme gedeckt. Davon wurden 44 % aus regenerativen Energieträgern gewonnen. Abbildung 4 zeigt die bestehenden Wärmenetzgebiete sowie Ausbauplanungen, sofern Daten zur Verfügung gestellt wurden. Kleinere, private Gebäudenetze wurden nicht in die Kartendarstellung mitaufgenommen.

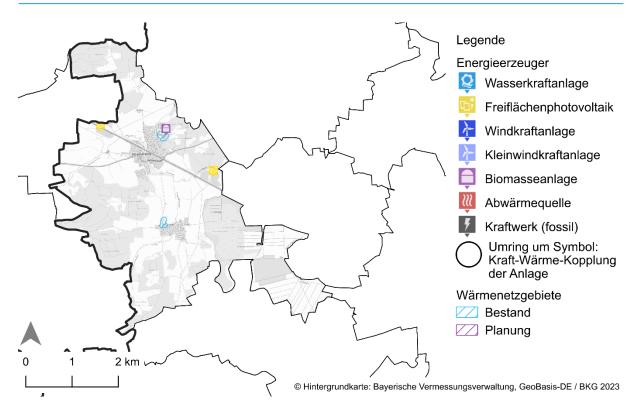


Abbildung 4: Bestehende Energieinfrastruktur im Wärmesektor.

Neben der netzgebundenen Wärmeversorgung wird der Großteil des Wärmebedarfs noch über dezentrale Wärmeerzeugungsanlagen bereitgestellt, wie in folgenden Absätzen erläutert:

Wärmepumpen auf Basis oberflächennaher Geothermie

Gemäß den Daten des Landratsamtes existieren zum Stichtag 01.01.2025 keine Genehmigungen für Erdwärmesonden im Verwaltungsgebiet.

Zudem wurden laut den Daten des Landratsamtes 5 Erlaubnisse für Grundwasserwärmepumpen erteilt.

Solarthermieanlagen

Eine Auswertung der Förderprogramme (MAP, MAP20, BEG EM) durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) zeigt für das Bilanzjahr 2022, dass rund 523 m² an installierter Kollektorfläche Solarthermie in der Gemeinde Althegnenberg gefördert wurden (vgl. Abbildung 5). Basierend auf einem bundesweiten Durchschnittswert bezüglich des Nichtgeförderten Zubaus von Solarthermieanlagen ist anzunehmen, dass in etwa die gleiche Anlagenfläche ohne Förderung über diesen Zeitraum hinweg installiert wurde⁹. Dabei handelt es sich ausschließlich um Dachanlagen, Freiflächen-Solarthermie sind im Verwaltungsgebiet nicht vorhanden. Somit kann davon ausgegangen werden, dass knapp 407 MWh des Wärmeverbrauchs über Solarthermieanlagen gedeckt werden. Dies entspricht etwa 2,8 % des Gesamtwärmebedarfs.

Seite | 8

⁹ Klimaschutzplaner (2024), Klima-Bündnis der europäischen Städte mit indigenen Völkern der Regenwälder | Alianza del Clima e.V.

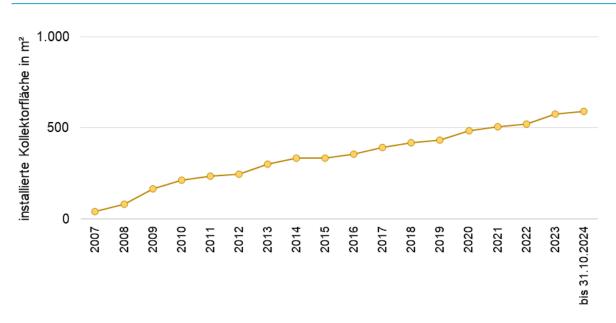


Abbildung 5: Zeitlicher Verlauf des geförderten Zubaus von Solarkollektorfläche (Datenquelle: BAFA, eigene Darstellung).

Kraft-Wärme-Kopplungsanlagen

Laut Marktstammdatenregister befinden sich in der Gemeinde Althegnenberg zum Zeitpunkt des Projektstarts keine Kraftwärmekopplungsanlagen in Betrieb.

Dezentrale Feuerungsstätten (Biomasse, Erdöl, Flüssiggas, Kohle)

Für die Projektbearbeitung wurden die Kehrbuchdaten der zuständigen Bezirksschornsteinfeger analysiert. Darin sind alle von Kaminkehrern erfassten Feuerungsanlagen enthalten und durch das Landesamt für Statistik (LfStat) aufbereitet. Diese Daten differenzieren zwischen Zentral- und Einzelraumheizungen sowie den jeweils eingesetzten Energieträgern. Besonders für die Ermittlung der Wärmeerzeugung durch nicht leitungsgebundene Heizungsanlagen wie Ölheizungen oder Biomasseheizungen (z.B. Scheitholz-, Pellet- oder Hackschnitzelheizungen) sind diese Informationen von Bedeutung. Die Auswertung zeigt, dass im Verwaltungsgebiet knapp 507 nicht leitungsgebundene Zentralheizungen mit den Energieträgern Heizöl, Flüssiggas, Kohle oder Biomasse betrieben werden (siehe Abbildung 6). Unabhängig von der Leistungsklasse entfällt mit insgesamt 409 Anlagen ein Großteil auf Ölheizungen; bezogen auf den Gesamtwärmeverbrauch werden 42 % über Heizöl gedeckt. Auf mit Biomasse betriebene Zentralfeuerstätten entfallen 44 Anlagen, sie decken in etwa 28 % des Gesamtwärmeverbrauchs. Flüssiggasheizungen und Kohleöfen treten zahlenmäßig in den Hintergrund und tragen nur einen geringen Teil zur Wärmeversorgung bei.

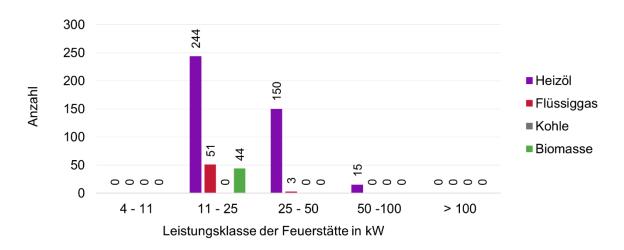


Abbildung 6: Anzahl der bestehenden Zentralfeuerungsstätten im Jahr 2022 (Datenquelle: Kehrbuchdaten von 2022).

Hinweis: Die dargestellten Energieinfrastrukturen stellen eine Momentaufnahme zum Zeitpunkt der Erstellung des Energienutzungsplans dar und dienen als Übersicht zur ersten Orientierung. Es ist zu beachten, dass die tatsächliche Position der Leitungen von den gezeigten Plänen abweichen kann und nach Abschluss des Energienutzungsplans neue Leitungen hinzugekommen sein können. Die Darstellungen sind daher nicht als Ersatz für eine Planauskunft geeignet. Für konkrete Vorhaben ist stets eine verbindliche Auskunft bei den zuständigen Netzbetreibern einzuholen.

2.4. Gebäudebestand und Wärmenachfrage

2.4.1. Siedlungsstruktur und Baualtersklassen

Der Gebäudebestand der Gemeinde Althegnenberg stammt überwiegend aus der Nachkriegszeit, die größte Bautätigkeit fand im Zeitraum 1948 bis 1978 statt. Ein Großteil dieses Zubaus entfällt auf den Einfamilienhausbestand. Nach 1978 hat die Bautätigkeit weiter abgenommen, diese Stagnation setzt sich bis in die 2020er Jahre fort.

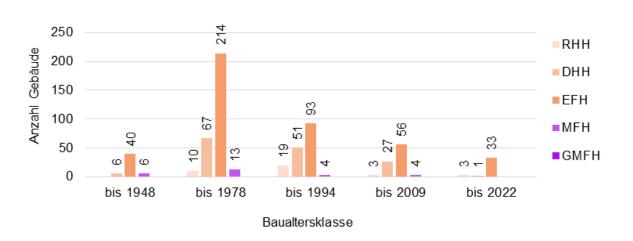


Abbildung 7: Anzahl der Wohngebäude nach Gebäudetyp¹⁰ und Altersklasse (Datenquelle: ENIANO Gebäudekataster).

2.4.2. Wärmebedarfsberechnung

Ein gebäudescharfes Wärmekataster bildet mit seinen flächendeckenden Informationen zur strukturellen Wärmenachfrage des Gebäudebestands eine zentrale Datengrundlage des Energienutzungsplans. Die ENIANO GmbH hat ein bayernweites 3D-Wärmekataster erstellt und führt dies kontinuierlich fort. Mit den daraus gewonnenen Erkenntnissen zu baulicher Struktur, der Gebäudenutzung sowie dem Raumwärme- und Warmwasserbedarf wird ein räumlich hochaufgelöstes Abbild des gesamten Wärmebedarfs im Verwaltungsgebiet generiert. Die Vorgehensweise zur Erstellung des Wärmekatasters ist in Abbildung 8 schematisch dargestellt.

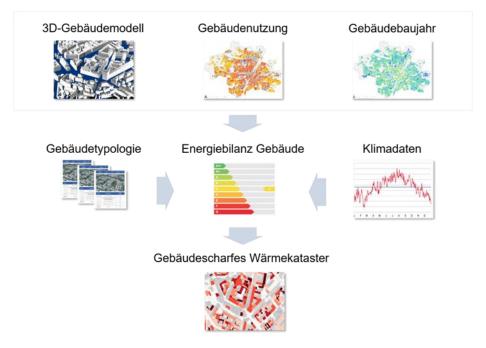


Abbildung 8: Schematische Darstellung zum Aufbau des gebäudescharfen Wärmekatasters.

Seite | 11

¹⁰ Abkürzungen: RHH - Reihenhaus, DHH - Doppelhaushälfte, EFH - Einfamilienhaus, MFH - Mehrfamilienhaus, GMFH - Großes Mehrfamilienhaus

Wesentliche Datengrundlage zur Berechnung des gebäudescharfen Wärmekatasters bildet das 3D-Gebäudemodell der bayerischen Vermessungsverwaltung. Dieses beinhaltet Informationen zur Gebäudekubatur und den einzelnen Gebäudebauteilen sowie zur Gebäudenutzung. Eine weitere Einflussgröße auf die Wärmenachfrage stellt das lokale Klima dar, das über ein zeitlich hoch aufgelöstes Testreferenzjahr in das Berechnungsmodell eingeht¹¹. Die Berechnung selbst erfolgt über gängige Methoden der energetischen Gebäudebilanzierung, wobei die Verfahren neben den formalen Rechenmodellen standardisierte Randbedingungen und Pauschalwerte vorgeben, etwa zur Approximation des Nutzerverhaltens oder zur vereinfachten Datenaufnahme und -verwendung. Weiterhin bildet die Gebäudenutzung einen wesentlichen Parameter des Modells. Die Gebäudenutzung sowie das Gebäudealter werden über eine Fusion verschiedener Datenquellen ermittelt, unter anderem aus öffentlichen Gebäudekatastern und statistischen Daten. Bei einzelnen Bestandsgebäuden kann es daher zu Abweichungen gegenüber der tatsächlichen Nutzung bzw. des tatsächlichen Baualters kommen. Weiterhin ist der Nichtwohngebäudebestand pauschaliert abgebildet, die Abweichungen zwischen ermittelter und realer Wärmenachfrage sind hier gegenüber jenen für den Wohngebäudebestand unter Umständen größer.

Abbildung 9 stellt das Ergebnis und die räumliche Verteilung des Wärmebedarfs in der Gemeinde Althegnenberg dar. Ebenfalls in der Abbildung enthalten sind - sofern vorhanden - bestehende und geplante Wärmenetze.

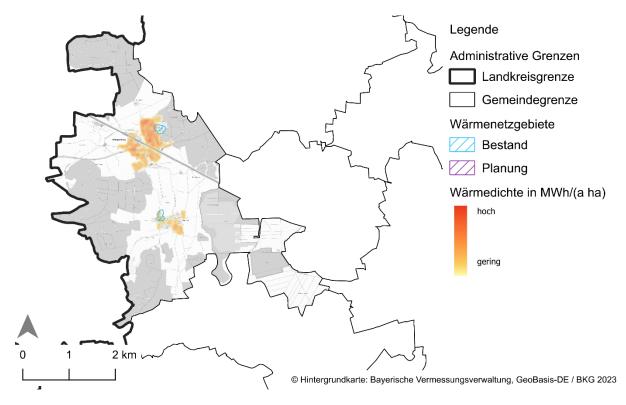


Abbildung 9: Räumliche Verteilung der Wärmebedarfsdichte im Wohngebäudesektor.

¹¹ Deutscher Wetterdienst Bundesverband (Hrsg.) (2022): Testreferenzjahre.

2.5. Verkehr

Die Erfassung der Endenergieverbräuche im Verkehrssektor kann aufgrund des hohen am CO₂-Ausstoß nicht vernachlässigt werden. Gemäß Bisko-Methodik (Bilanzierungssystematik kommunal), werden auch hier die Treibhausgasemissionen den einzelnen Kommunen nach dem Territorialprinzip ermittelt und zugeordnet. Da Verkehrsdaten auf kommunaler Ebene häufig nicht flächendeckend und für alle Verkehrsträger verfügbar sind, müssen sie für die Emissionsbilanzierung mithilfe von Durchschnittswerten und statistischen Hochrechnungen ergänzt werden. Während der Verkehr auf Autobahnen und Bundesstraßen durch fest installierte Zählstationen relativ präzise erfasst und den jeweiligen Kommunen zugeordnet werden kann, ist dies für das nachgeordnete Straßennetz schwieriger. Hier erfolgt die Zuordnung der Verkehrsemissionen auf Basis der Zulassungszahlen des Landratsamtes bis zum Stichtag 31.12.2022, womit ebenfalls alternative Antriebe (E-Mobilität, gasbetriebene Fahrzeuge oder bivalente Antriebe) im Verkehrssektor berücksichtigt werden. Im Rahmen der Energiebilanzierung durch die Software Klimaschutzplaner werden auch der öffentliche Nahverkehr, Schienenverkehr und Nutzfahrzeuge berücksichtigt. Obwohl diese Methodik nicht alle lokalen Unterschiede im Verkehrsaufkommen in den einzelnen Kommunen abbilden kann, ermöglicht sie dennoch eine realistische Einschätzung der verkehrsbedingten CO₂-Emissionen und trägt zur Gesamterfassung der Treibhausgasbilanz im Untersuchungsgebiet bei.

2.6. Unternehmensumfrage

Um die Sektoren Gewerbe, Handel, Dienstleistung, Industrie und die Energieverbräuche der kommunalen Einrichtungen genauer zu analysieren, hat das Klimaschutzmanagement des Landkreis Fürstenfeldbruck, ca. 100 Unternehmen kontaktiert. Diese wurden gebeten, ihre durchschnittlichen Jahresenergieverbräuche über einen Online-Fragebogen zu übermitteln. Zudem wurden ungenutzte Energiepotenziale, Planungen und Interessen der Unternehmen erfragt. Für die Gemeinde Althegnenberg ergaben sich hierbei keine Rückläufer.

3. Energie- und Treibhausgasbilanz

3.1. Methodik und Datengrundlagen

Energie- und Treibhausgasbilanzen (THG-Bilanzen) bilden die Basis des guantitativen Monitorings und Controllings für den Klimaschutz von Kommunen. Die Bilanzen geben einen Überblick über die Verteilung der Energieverbräuche und THG-Emissionen nach verschiedenen Sektoren wie private Haushalte, Gewerbe, Industrie und Energieträgern wie Öl, Gas und Strom in einer Kommune. So helfen sie dabei, über Jahre hinweg die langfristigen Tendenzen des Energieeinsatzes und der THG-Emissionen aufzuzeigen. 12 Eine Energie- und Treibhausgasbilanz bildet somit eine fundierte Grundlage für die Weiterentwicklung des kommunalen Klimaschutzes. Sie ermöglicht es, gezielte Maßnahmen zur Steigerung der Energieeffizienz, zur Förderung erneuerbarer Energien und zur Reduktion von Emissionen zu entwickeln und zu priorisieren. Die hier angewandte Bilanzierungsmethodik entspricht der BISKO-Methodik, die standardisiert und bundesweit im kommunalen Bereich anerkannt und genutzt wird. Dabei werden alle im betrachteten Territorium anfallenden Verbräuche auf Ebene der Endenergie (Endenergiebasierte Territorialbilanz) berücksichtigt und den verschiedenen Verbrauchssektoren zugeordnet. Dies bedeutet, dass nur die Endenergie bilanziert wird, die innerhalb der Grenzen des Betrachtungsgebiets verbraucht wird. Graue Energie¹³ sowie Energie, die von Bürgerinnen und Bürgern außerhalb des kommunalen Gebiets genutzt wird, werden in der Bilanz nicht erfasst.

Die Endenergie ist die vom Endverbraucher bezogene Energie, in der Regel in Form von Strom, Heizöl, Erdgas, Scheitholz, Holzpellets, Fernwärme und Kraftstoffen. Dafür bezeichnet die Primärenergie die Energie in ihrer ursprünglichen Form vor Umwandlungsprozessen, wie etwa Rohöl, Erdgas oder Sonnenstrahlung. Der Übergang von Primärenergie zu Endenergie ist mit erheblichen Verlusten verbunden, insbesondere durch Umwandlungsverluste in Kraftwerken, Transportverluste im Netz und den Eigenverbrauch der Energiesektoren. Die Endenergie ist somit die Grundlage für die Nutzung bei Verbrauchern, etwa als Strom, der für Licht und elektrische Geräte verwendet wird oder als Wärme aus Heizöl oder Fernwärme. Im Rahmen der Bilanzierung ermöglicht die Betrachtung der Endenergiebilanz eine differenzierte Analyse des Energieverbrauchs in den Sektoren. Für die Treibhausgasbilanzierung ist sie zugleich eng mit der Primärenergie verknüpft, da die Wahl des Energieträgers und dessen Effizienz Einfluss auf die CO₂-Emissionen und die Nachhaltigkeit des Energiesystems haben. Um die Treibhausgasemissionen zu ermitteln, wird der Endenergieverbrauch unter Anwendung von Emissionsfaktoren in CO₂-Äquivalente umgerechnet, um die Klimawirkung unterschiedlicher Energieträger vergleichbar darzustellen.

¹² BISKO Bilanzierungs-Systematik Kommunal. Methoden und Daten für die kommunale Treibhausgasbilanzierung für den Energie- und Verkehrssektor in Deutschland. Agentur für kommunalen Klimaschutz am Deutschen Institut für Urbanistik gGmbH (Difu), April 2024.

¹³ Graue Energie bezeichnet die Energie, die bei der Herstellung von Gütern benötigt wird. Weiterentwicklung des kommunalen Bilanzierungsstandards für THG-Emissionen. Umweltbundesamt, April 2020.

Abbildung 10 veranschaulicht anhand eines Energieflussbildes die Begriffe Primär- und Endenergie.

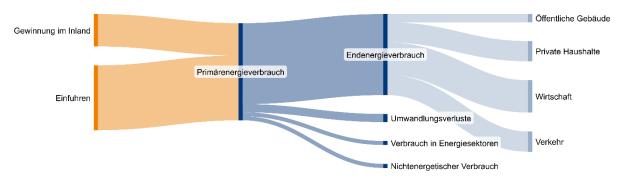


Abbildung 10: Veranschaulichung des Energieflusses vom Primär- zum Endenergieverbrauch.

Im Rahmen des Energienutzungsplans des Landkreises Fürstenfeldbruck werden die Endenergieverbräuche und Treibhausgasemissionen für das Bilanzjahr 2022 ermittelt. Eine aktuellere Bilanzerstellung war zum Zeitpunkt der Berichtslegung im Jahr 2024 nicht möglich. Dies liegt zum einen daran, dass die endgültigen Jahresverbräuche von Strom- und Erdgasnetzbetreibern aufgrund der Abrechnungsmodalitäten erst mit ein bis zwei Jahren Verzögerung vorliegen. Zum anderen hängt die Berechnung der Treibhausgasbilanz von den Emissionsfaktoren der verschiedenen Energieträger ab. Beispielhaft ist hier der Emissionsfaktor für den deutschen Strommix (Bundesstrommix) zu nennen. Die Bereitstellung der Emissionsfaktoren ist aufwändig und führt dazu, dass die Bilanzberechnungen mit einer Verzögerung von jeweils ca. zwei Jahren erfolgen können. Die Berechnung der Energiebilanz wurde mithilfe der webbasierten Software "Klimaschutzplaner" durchgeführt, die das Klima-Bündnis der europäischen Städte mit indigenen Völkern der Regenwälder | Alianza del Clima e.V. herausgibt. Diese erlaubt es, lokale Energieverbräuche auf Basis von spezifischen Verbrauchsdaten und statistischen Annahmen zu analysieren. Fehlende Daten insbesondere bei nicht leitungsgebundenen Energieträgern wie Heizöl - werden durch statistische Verfahren ergänzt, die sich an nationalen und regionalen Durchschnittswerten orientieren. Die Analyse basiert auf einer Kombination von Primärdaten, statistischen Auswertungen und Modellierungen. Die Datengüte der unterschiedlichen Datenguellen wird dabei berücksichtigt und gegeneinander abgewogen, sodass stets die Daten der höchsten Güte priorisiert werden und eine transparente Nachvollziehbarkeit besteht.

Übersicht der wichtigsten Datenquellen:

- Stromverbräuche: Absatzdaten des zuständigen Stromversorgungsunternehmens
- Erneuerbare Stromerzeugung: Einspeisedaten des lokalen Stromnetzbetreibers
- Erdgasverbräuche: Absatzdaten des lokalen Gasversorgers
- Wärmelieferung über Wärmenetze: Absatzdaten der Wärmenetzbetreiber, Abfrage der Biogasanlagenbetreiber und deren Wärmebereitstellung
- Strom- und Wärmeverbräuche kommunaler Liegenschaften: Auskünfte der Verwaltung basierend auf Online-Fragebogen bzw. Abfrage-Datei
- Gewerbe und Industrie: landkreisweite Befragung über Online-Umfragebogen

- **Dezentrale Heizungsanlagen:** Auswertung aller Feuerstätten aus den Daten des digitalen Kehrbuchs des Landesamtes für Statistik
- Erneuerbare Heizungsanlagen (Solarthermieanlagen, Biomasseanlagen, Wärmepumpen):
 - Statistische Auswertung der BAFA-Förderstatistik (Informationen nur zu geförderten Anlagen vorhanden), Korrekturfaktor aus bundesweiter Entwicklung berücksichtigt
 - Stromabsatzdaten mit Wärmepumpentarifen des lokalen
 Stromversorgungsunternehmens
 - Stromabsatzdaten mit Nachtspeicherheizungstarifen des lokalen Stromversorgungsunternehmens

Für die Bilanz wird nach folgenden Sektoren differenziert:

1. Private Haushalte

Die Verbrauchergruppe "Private Haushalte" umfasst alle zu Wohnzwecken genutzten Flächen in der Gemeinde Althegnenberg. Das schließt sowohl Wohnungen in Wohngebäuden als auch in Nicht-Wohngebäuden (z.B. hauptsächlich gewerblich genutztes Gebäude mit integrierter Wohnung) ein.

2. Kommunale Einrichtungen

In der Verbrauchergruppe "Kommunale Einrichtungen" werden alle Liegenschaften der Kommunen, inklusive Straßenbeleuchtung und gemeindeeigener Ver- und Entsorgungseinrichtungen, zusammengefasst.

3. Wirtschaft

In der Verbrauchergruppe "Wirtschaft" werden alle Energieverbraucher zusammengefasst, die nicht entweder unter die Verbrauchergruppen "Private Haushalte" oder "Kommunale Liegenschaften" fallen. Dies sind beispielsweise Betriebe aus Gewerbe, Handel, Dienstleistung und Industrie. Auch Landwirtschafts- und als Tourismusbetriebe gemeldete Unternehmen sind dieser Verbrauchergruppe zugeordnet, sowie die Liegenschaften des Landkreises (wie z.B. weiterführende Schulen).

4. Verkehr

Zwar gehört der Sektor Verkehr nicht zu den klassischen Komponenten eines Energienutzungsplans, jedoch ist es aufgrund der zunehmenden Bedeutung der Sektorenkopplung zwischen Strom, Wärme und Verkehr sinnvoll, diesen Bereich separat zu analysieren und in die Energiebilanz des Landkreises zu integrieren (siehe Kapitel 2.5: Verkehr). Zur Verbrauchergruppe "Verkehr" gehört der Personen- und Güterverkehr auf der Straße sowie der Schiene.

3.2. Ergebnisse der Endenergie- und Treibhausgasbilanz

Einwohner (Stand 2022)	Einwohner/ha
2.104	1,3
Fläche (ha)	Flächenanteil am Landkreis
1.608	3,7 %
	•

Im Jahr 2022 lag die Bevölkerungszahl in der Gemeinde

Althegnenberg bei 2.104 Einwohnern. Insgesamt wurden 11.421 t CO₂-Äquivalente ausgestoßen. Somit lag der Treibhausgasausstoß pro Kopf und Jahr bei 5,4 t CO₂-Äquivalente.

Folgende Zusammenstellung zeigt für die Gemeinde Althegnenberg die durchschnittliche Treibhausgasemission pro Jahr pro Kopf aufgeteilt nach Sektoren:

Im Bezugsjahr 2022 wurden insgesamt 36 GWh Endenergie verbraucht.

Abbildung 11 zeigt die Verteilung des Endenergieverbrauchs auf die verschiedenen Energieträger¹⁴.

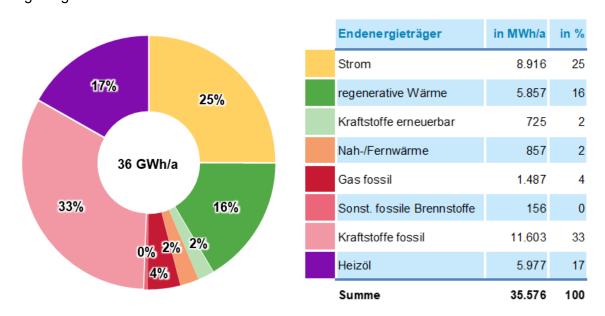


Abbildung 11: Prozentuale Aufteilung des Endenergieverbrauchs nach Endenergieträger für das Jahr 2022.

Seite | 17

¹⁴ Die Kategorie "Sonstige fossile Energieträger" umfasst alle fossilen Energieträger (Erdöl, fossile Gase, fossile Brennstoffe und Kohle), deren Nutzung aufgrund der Datenqualität (Statistisches Landesamt) nicht weiter differenziert werden kann. Für die Treibhausgasbilanz nutzt der Klimaschutzplaner einen Wert von 330 g CO₂äq / kWh.

Stellt man dem Endenergieverbrauch die jeweiligen Treibhausgasemissionen gegenüber, zeigt sich eine veränderte prozentuale Aufteilung über die Endenergieträger, welche die unterschiedliche Klimawirkung der einzelnen Energieträger verdeutlicht und den Effekt des Ausbaus regenerativer Stromerzeugungsanlagen unterstreicht.

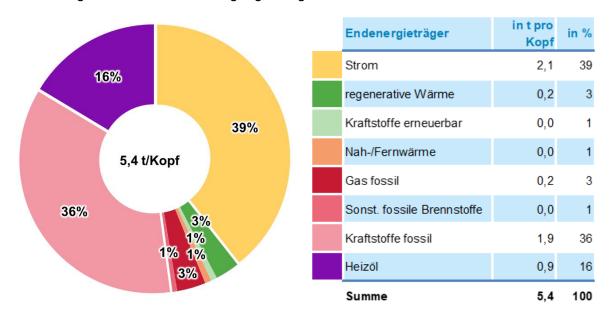


Abbildung 12: Prozentuale Aufteilung der Pro-Kopf-Triebhausgasemissionen nach Endenergieträger für das Jahr 2022.

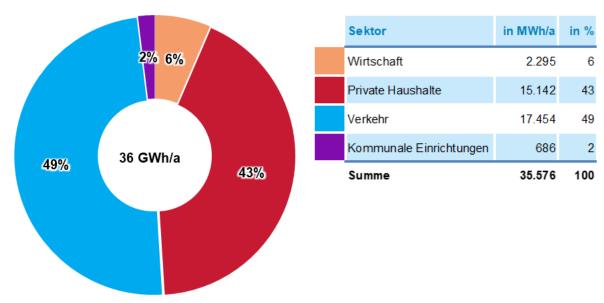


Abbildung 13: Prozentuale Aufteilung des Endenergieverbrauchs nach Sektoren für das Jahr 2022.

3.3. Vergleich von regenerativer Erzeugung und Gesamtverbrauch

Die Gegenüberstellung des Energieverbrauchs mit der aktuellen regenerativen Erzeugung zeigt, wie wichtig es ist, nicht nur den Ausbau erneuerbarer Energien voranzutreiben, sondern gleichzeitig Strategien für Energieeinsparung und -effizienz umzusetzen. Das Diagramm in Abbildung 14 veranschaulicht die Ergebnisse für die Gemeinde Althegnenberg.

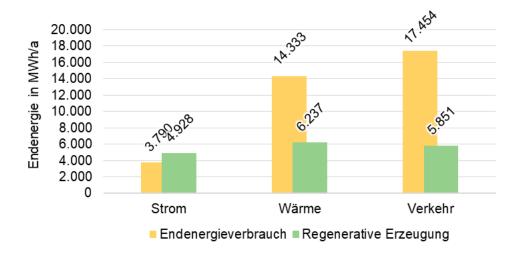


Abbildung 14: Gegenüberstellung von Energieverbrauch und Erzeugung in den Sektoren Strom, Wärme und Verkehr.

Abbildung 15 stellt im inneren Ring die Anteile von Strom- und Wärmeverbrauch sowie den Energiebedarf im Verkehrssektor gegenüber. Im äußeren Ring sind die bestehenden regenerativen Energieträger und ihr Beitrag zur Energiebereitstellung der Sektoren in der Gemeinde Althegnenberg abgebildet.

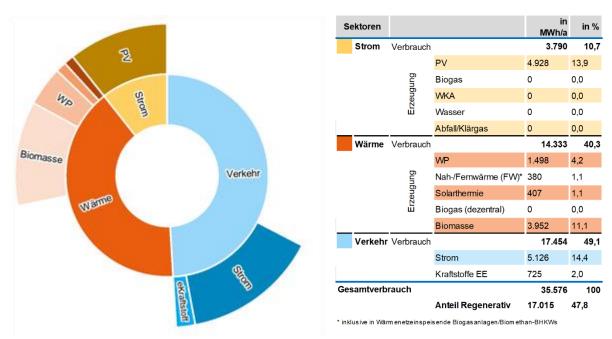


Abbildung 15: Vergleich der erneuerbaren Energieerzeugung und des Verbrauchs im Jahr 2022. 15

Seite | 19

¹⁵ Eine regenerative Erzeugung (äußerer Ring), die 100 % des Verbrauchs (innerer Ring) übersteigt, wird als 100 % dargestellt.

3.4. Die Gemeinde Althegnenberg im überregionalen Vergleich

In Abbildung 16 sind die Ergebnisse der Energiebilanz der Gemeinde Althegnenberg zu den Durchschnittswerten des Landkreises, des Freistaates Bayern und der Bundesrepublik Deutschland in Relation gesetzt. Sie zeigt die Anteile der erneuerbaren Energien am Bruttostromverbrauch und an bisher genutzten regenerativen Energieträgern an der Wärmebereitstellung. Im überregionalen Vergleich zeichnet sich die Gemeinde Althegnenberg durch einen überdurchschnittlich hohen Stromverbrauch aus erneuerbaren Energien aus und übertrifft dabei die Durchschnittswerte des Landkreises, des Freistaats Bayern sowie des Bundes deutlich. Im Bereich Wärme übertrifft die Gemeinde ebenfalls die Vergleichswerte des Landkreises, des Freistaats Bayern sowie des Bundes.

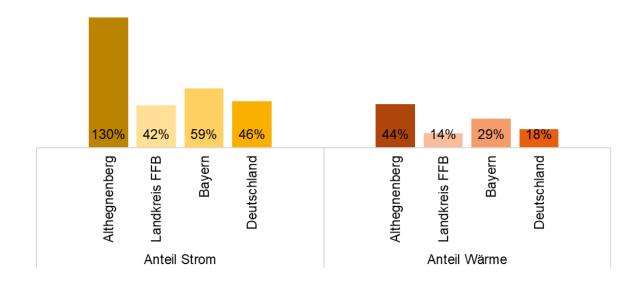


Abbildung 16: Anteil der erneuerbaren Energien am Bruttostromverbrauch und an der Wärmebereitstellung im Jahr 2022 im überregionalen Vergleich (Datenquelle für überregionale Werte: StMWi, BMWK).

4. Potenzialanalyse

Die Potenzialanalyse zeigt auf, welche Möglichkeiten im Verwaltungsgebiet existieren, um mittels Energieeinsparung, regenerativer Energieerzeugung und Nutzung der vorhandenen Energieträger die Strom- und Wärmeversorgung zu dekarbonisieren.

4.1. Potenzialbegriffe

Bei der Potenzialanalyse werden das theoretische, technische, wirtschaftliche und umsetzbare Potenzial unterschieden (Abbildung 17). Das theoretische Potenzial bezieht sich auf das maximal mögliche Potenzial unter Berücksichtigung der physikalischen Grenzen. Ein Beispiel dafür ist die Jahressumme der Sonneneinstrahlung auf eine Dachfläche. Das technische Potenzial reduziert diesen Wert um Faktoren, die von der aktuellen Technologie und der aktuellen Gesetzeslage abhängig sind. Um beim Beispiel von Dach-Photovoltaik zu bleiben: hier Wirkungsgrade der Module oder Einschränkungen Denkmalschutzes berücksichtigt. Das technische Potenzial ist damit veränderlich und vom gegenwärtigen Entwicklungsstand der Technologie sowie gesetzlichen Rahmenbedingungen abhängig. Das wirtschaftliche Potenzial umfasst nur noch den Anteil des technischen Potenzials, bei dem unter den aktuellen wirtschaftlichen Rahmenbedingungen ein ökonomischer Mehrwert zu erwarten ist. Es variiert daher je nach Zeitpunkt und Betrachtungsweise. Die Betrachtung des Energienutzungsplans reicht bis in das wirtschaftliche Potenzial hinein. Unberücksichtigt bleibt am Ende das wesentlich geringere umsetzbare Potenzial, das auch soziokulturelle Faktoren wie gesellschaftliche Akzeptanz oder die Umsetzungsbereitschaft einzelner Flächeneigentümer berücksichtigt.

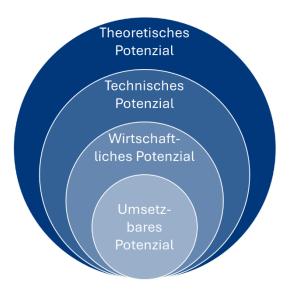


Abbildung 17: Zusammenhang der verschiedenen Potenzialbegriffe.

4.2. Potenziale zur Energieeinsparung und Steigerung der Energieeffizienz

Neben der Umstellung auf regenerative Energieerzeuger kann die Energiewende nur durch erhebliche Energieeinsparungen erreicht werden. Das Ziel, den Energiebedarf zu senken, kann über zwei methodische Ansätze erreicht werden: Einsparung durch Vermeidung von Energieverschwendung oder Verzicht. Dies ist vorrangig nur durch Bildung und Aufklärung von Einzelpersonen zu erreichen. Einfacher und großflächiger zu steuern ist die Methode der Effizienzsteigerung wie z.B. durch den Einsatz effizienterer Elektrogeräte oder bessere Wärmedämmung von Gebäuden. Dazu hat die Europäische Union eine Richtlinie zur Energieeffizienz erarbeitet und über die Jahre erweitert. Sie sieht seit 2023 eine verbindliche Obergrenze von 8.874 TWh im Endenergieverbrauch innerhalb der EU vor. Das entspricht einer Reduktion von 11,7 % verglichen zum aktuellen Entwicklungspfad von 2020.

4.2.1. Sektor Strom

Die Analyse der Einsparpotenziale in der Verbrauchergruppe "Private Haushalte" orientiert sich an den Vorgaben der EU-Energieeffizienzrichtlinie (EED). Dabei wird davon ausgegangen, dass jährlich eine Strombedarfsreduktion von durchschnittlich 1,5 % im Vergleich zum Vorjahr erzielt werden kann. Tabelle 3 zeigt die Ergebnisse für die Kommune für das Zieljahr 2040. Die Abschätzung der Potenziale im Sektor Wirtschaft ist mit gewissen Unsicherheiten verbunden, wird jedoch ebenfalls mit den Annahmen der EU-Effizienzrichtlinie berechnet.

Tabelle 3: Einsparpotenzial des Stromsektors¹⁶.

	Verbrauch 2022 in MW Ma	Verbrauch 2040 in MWh/a	Einsparpotenzial 2040 in MW Ma	Einsparpotenzial 2040 in Prozent	Einsparpotenzial am Gesamtverbrauch 2022 in Prozent
Private Haushalte	2.644	2.014	630	24%	17%
Kommunale Einrichtungen	95	72	23	24%	1%
Wirtschaft	1.051	801	250	24%	7%
Summe	3.790	2.887	903	24%	24%

Diese bilanzielle Berechnung des Einsparpotenzials stellt keine Prognose des zukünftigen Strombedarfs dar. Trotz Einspar- und Effizienzmaßnahmen muss davon ausgegangen werden, dass der Strombedarf insgesamt in Zukunft stark steigt. Der Grund dafür ist die Elektrifizierung des Verkehrs und des Wärmesektors. Bis 2030 geht das Bundeswirtschaftsministerium auch unter Berücksichtigung von Effizienzsteigerung von einem Anstieg des Strombedarfs um 34 % aus¹⁷.

¹⁶ Eine geringfügige Ungenauigkeit bei der Summenbildung, die durch mathematische Rundungen entsteht, ist methodisch vertretbar.

¹⁷ Bundesministerium für Wirtschaft und Klimaschutz (Hrsg.) (2024): Unser Strommarkt für die Energiewende (Link, zuletzt abgerufen: 09.12.2024).

4.2.2. Sektor Wärme

Das Einsparpotenzial durch energetische Sanierungen an der Gebäudehülle bezieht sich auf die mögliche Reduktion des Energieverbrauchs, die durch gezielte Maßnahmen zur Verbesserung der energetischen Effizienz von Gebäuden erzielt werden kann. Dazu zählen unter anderem die Dämmung von Außenwänden, Dächern und Kellerdecken, der Austausch von alten Fenstern gegen moderne, energieeffiziente Modelle sowie die Erneuerung von Heizungsanlagen, um die Effizienz der Wärmebereitstellung zu steigern.

Dieses Potenzial ist besonders ausgeprägt bei Gebäuden, die vor der Einführung strengerer Wärmeschutzverordnungen errichtet wurden, insbesondere vor 1978, als die ersten gesetzlichen Vorgaben zur Wärmedämmung in Deutschland in Kraft traten. Grundsätzlich variiert das Einsparpotenzial nach Gebäudeart, Baujahr und den spezifischen durchgeführten Maßnahmen. Studien zeigen, dass bei umfassenden Sanierungen signifikante Einsparungen im Wärmebedarf möglich sind, die im Durchschnitt 47 % betragen. Diese Einsparungen tragen nicht nur zur Senkung der Energiekosten der Bewohner bei, sondern auch zur Reduzierung der CO₂-Emissionen, was entscheidend zur Erreichung der Klimaziele beiträgt.

Das für die Gemeinde Althegnenberg ermittelte Potenzial basiert auf dem gebäudescharfen 3D-Wärmekataster. Damit kann für jedes als beheizt identifizierte Bestandsgebäude der Effekt von Sanierungsmaßnahmen auf den Wärmebedarf für zwei Sanierungsvarianten berechnet werden. Die Annahmen zum Nutzerverhalten sowie etwaige Einflüsse der Anlagentechnik bleiben über alle Varianten hinweg konstant. Folgende zwei Sanierungsszenarien wurden berechnet:

Das **Sanierungsszenario** "**Mittel**" orientiert sich an den Anforderungen des KfW-70-Standards und sieht eine Reduktion des spezifischen Transmissionswärmeverlusts auf maximal 85 % sowie des Jahres-Primärenergiebedarfs auf maximal 70 % der Referenzwerte gemäß EnEV 2016 vor. In diesem Szenario wird angenommen, dass sich die Sanierungstätigkeit auf den Wohngebäudebestand beschränkt.

Das ambitioniertere **Sanierungsszenario** "Hoch" orientiert sich am KfW-40-Standard und setzt eine Reduktion des spezifischen Transmissionswärmeverlusts auf maximal 55 % sowie des Jahres-Primärenergiebedarfs auf maximal 40 % der Referenzwerte gemäß EnEV 2016 voraus. Zusätzlich zu den Wohngebäuden wird hier auch ein Sanierungspotenzial für Nichtwohngebäude berücksichtigt. Damit übertrifft dieses Szenario die gesetzlichen Vorgaben erheblich und bietet eine Grundlage für eine hochgradig energieeffiziente Sanierung mit maximaler Reduktion des Energieverbrauchs und der CO₂-Emissionen.

Abbildung 18 zeigt die räumliche Verteilung des Einsparpotenzials für das Sanierungsszenario "Mittel" im Verwaltungsgebiet. Das geringere Sanierungspotenzial in bestimmten Siedlungsbereichen kann zum Teil auf die Nicht-Wohngebäude in diesen Siedlungsbereichen zurückgeführt werden, für die in diesem Szenario keine Einsparung berechnet wird. Neben der kompakten Bauweise spielen weitere zahlreiche Faktoren, wie die Dämmung der Gebäudehülle, die Ausrichtung des Gebäudes, der Grundriss, der Anteil und die energetische Qualität der Maueröffnungen, die Luftdichtigkeit, die Heizungsanlage sowie weitere technische

Ausstattungen, eine wichtige Rolle. So kann z.B. auch bei einem vergleichbaren Gebäudeenergiestandard ein Gebäude in kompakter Bauweise über ein niedrigeres Einsparpotenzial verfügen, da der Energieverlust über die Außenhülle bereits geringer ausfällt als bei verwinkelten Bauten.

Abbildung 18: Einsparungspotenzial im Wärmesektor für Wohngebäude mit Sanierungsszenario "Mittel".

Das Sanierungsszenario "Hoch" wird in seiner räumlichen Verteilung in Abbildung 19 dargestellt.

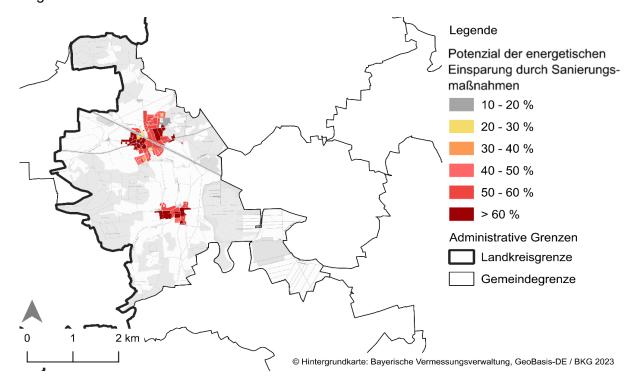


Abbildung 19: Einsparungspotenzial im Wärmesektor für Wohngebäude mit Sanierungsszenario "Hoch".

Insgesamt birgt der Gebäudebestand in der Gemeinde Althegnenberg ein großes Potenzial zur Energieeinsparung über energetische Sanierung der thermischen Gebäudehüllen. Dieses beträgt bezogen auf den Jahresheizwärmebedarf 56 %, unter Annahme einer Sanierungstiefe entsprechend dem Sanierungsszenario "Hoch". Über eine Sanierung nach dem Sanierungsszenario "Mittel" lässt sich eine Einsparung von 42 % erreichen (vgl. Tabelle 4 und Abbildung 20). Da sich die durchschnittliche Sanierungsrate in Deutschland seit vielen Jahren bei unter einem Prozentpunkt befindet¹⁸, wird das Gesamtpotenzial in der Realität nicht erreichbar sein. Unter Annahme einer Sanierungsrate von 1 % würde bis zum Jahr 2040 eine Reduktion des Jahresheizwärmebedarfs im Sanierungsszenario "Mittel" von 8 % und im Sanierungsszenario "Hoch" von 10 % erreicht werden (vgl. Tabelle 4 und Abbildung 20).

Tabelle 4: Einsparpotenzial im Jahresheizwärmebedarf durch Sanierung.

	Wärmeenergie- bedarf in MWh	Gesamt Einsparpotenzial in MWh in %		Einsparpotenzial bei 1 % p.a. Sanierungsrate bis 2040 in MWh in %	
lst-Zustand	22.516				
Sanierungsszenario "Mittel"	13.040	-9.475	-42%	-1.706	-8%
Sanierungsszenario "Hoch"	9.928	-12.588	-56%	-2.266	-10%

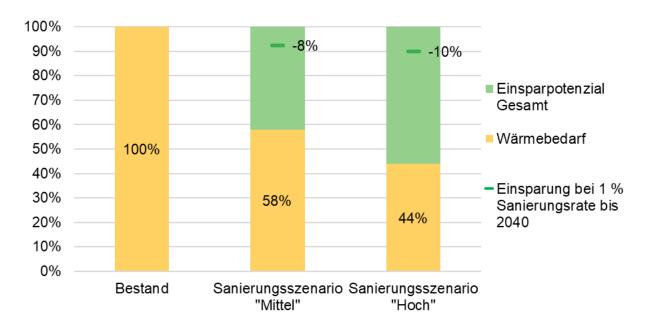


Abbildung 20: Relatives Einsparpotenzial des Jahresheizwärmebedarfs durch Sanierung.

Seite | 25

¹⁸ Bundesverband energieeffiziente Gebäudehülle e.V. (Hrsg.) (2024): Sanierungsquote (Link, zuletzt abgerufen: 12.12.2024).

4.3. Potenziale zur Energieerzeugung

4.3.1. Photovoltaik auf Dachflächen

Das Ziel der Potenzialermittlung für Photovoltaikanlagen auf Dachflächen besteht darin, die dachflächenspezifischen Erträge potenzieller Photovoltaikanlagen über das gesamte Verwaltungsgebiet hinweg zu ermitteln und daraus ein realisierbares technisches Gesamtpotenzial abzuleiten.

Grundlage der Analyse ist die Ermittlung der solaren Einstrahlung auf allen Dachflächen, die im 3D-Gebäudemodell der Vermessungsverwaltung erfasst sind. Ein detailliertes 3D-Oberflächenmodell (Punktwolke) sowie ein digitales Geländemodell dienen zur Modellierung der umgebenden Verschattung, etwa durch Vegetation, Gebäude oder die Topographie.

Zunächst wird für alle Dachflächen im Untersuchungsgebiet die mittlere solare Einstrahlung in hoher räumlicher (20-cm-Raster) und zeitlicher Auflösung berechnet. Hierbei werden Diffusund Direktstrahlung sowie die resultierende Globalstrahlung differenziert. Die Einstrahlungssimulation berücksichtigt (nah-)verschattende Einflüsse, etwa von Dachaufbauten und umliegenden Gebäuden, basierend auf dem 3D-Gebäudemodell. Kleinere Dachaufbauten wie Schornsteine oder Dachgauben sowie dachparallele Elemente wie Dachfenster sind im Gebäudemodell nicht enthalten und können daher nicht berücksichtigt werden. Überdies finden fernverschattende Einflüsse wie etwa durch Vegetation oder Topographie Berücksichtigung. Auf Basis dieser Einstrahlungsdaten werden potenzielle Flächen für die Photovoltaiknutzung identifiziert und für jede geeignete Dachfläche eine dachparallele Modulbelegung ausgewiesen, deren spezifischer Ertrag Einstrahlungsanalyse abgeleitet wird.

Folgende grundlegende Annahmen werden zur Potenzialermittlung für Photovoltaikanlagen getroffen:

Modullänge:	1,7	m
Modulbreite:	1,0	m
Modulfläche:	1,7	m²
Peakleistung Modul:	420,0	W_P
Systemwirkungsgrad:	18,0	%

Der Systemwirkungsgrad definiert dabei die Effizienz der Umwandlung von solarer Einstrahlung in Wechselstrom und berücksichtigt zusammenfassend

- den mittleren Wirkungsgrad der Module (Umwandlung von Solarstrahlung in Gleichstrom)
- die Verluste der DC-Verkabelung (Weiterleitung des Gleichstroms zum Wechselrichter)
- die Verluste im Wechselrichter (Wirkungsgrad für die Umwandlung von DC in AC)
- die Verluste der AC-Verkabelung (Weiterleitung des Wechselstroms zum Einspeisepunkt)

Der mittlere Wechselstromertrag pro Modul errechnet sich aus dem Produkt der auf das Modul eintreffenden Jahressumme der Globalstrahlung und dem Systemwirkungsgrad. Abbildung 21 zeigt das Ergebnis anhand eines Beispielgebäudes.

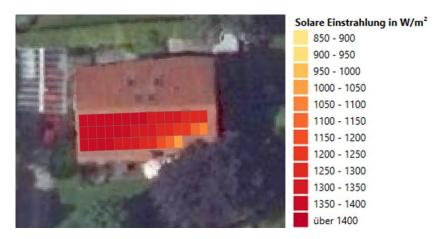


Abbildung 21: Beispielgebäude mit modelliertem Dach-Photovoltaikpotenzial und Einstrahlungswerten pro Modul.

Das theoretische, Gesamtpotenzial ergibt sich aus der Summe der modulweisen Potenziale. Dieses übersteigt das technisch realisierbare Potenzial wesentlich. Zur Abschätzung des technisch realisierbaren Potenzials wurden folglich gebäudespezifische sowie pauschalierte Reduktionsfaktoren auf das theoretische Potenzial angewendet. Der Reduktionsfaktor ergibt sich, in Anlehnung an Analysen des Potenzials der Bundeshauptstadt Berlin¹⁹, aus den folgenden Einflussgrößen zu:

- Reduktion Modellgenauigkeit 10 %
- Reduktion Gründächer / anderweitig genutzte Dächer 10 %
- Reduktion Eigentumsart²⁰ / Nutzung 20 %
- Reduktion gesamt 40 %

Zusätzlich werden Bestandsanlagen im Verwaltungsgebiet in der Berechnung berücksichtigt. Bis Ende 2023 sind 1,9 MWp²¹ auf den Dächern der Gemeinde Althegnenberg installiert. Der mittlere, spezifische Jahresertrag der Bestandsanlagen wird überschlägig mit 800 MWh/MWp angenommen. Dies entspricht dem mittleren Stromertrag der bestehenden Dachphotovoltaikanlagen im Landkreis im Jahr 2022.

Somit ergibt sich nach Abzug der bestehenden Anlagen (alle Anlagen, die bis Ende 2023 registriert wurden) im Ergebnis ein Ausbaupotenzial an installierbarer Photovoltaikleistung auf Dachflächen mit einer Leistung von 10,2 MWp und einer potenziellen Stromerzeugung von 8.455 MWh/a. Bilanziell übersteigt das den Stromverbrauch der Gemeinde. Aufgrund der zeitlichen Verfügbarkeit von Solarstrom (Spitze zur Mittagszeit/geringer Ertrag am Abend und

¹⁹ Berner, J., Siegel, B., Quaschning, V. (2018): Das Berliner Solarpotenzial: Kurzstudie zur Verteilung des solaren Dachflächenpotenzials im Berliner Gebäudebestand. Berlin.

²⁰ Mit dem Abschlag "Eigentumsart" wird der schwierigen Realisierbarkeit von PV-Anlagen bei Wohnungseigentümergemeinschaften (WEG) Rechnung getragen.

²¹ Datenquelle: Marktstammdatenregister (Summe der gemeldeten Bestandsanlagen bis Ende 2023).

im Winter) werden daher weitere Technologien der Stromerzeugung benötigt. Hinzu kommt, dass in der Realität nicht das gesamte technische Potenzial von Dachflächen für Photovoltaikanlagen ausgeschöpft werden wird. Gründe dafür sind vielfältig: Im Einzelfall können wirtschaftliche Hemmnisse wie hohe Investitionskosten, unzureichende Förderanreize oder lange Amortisationszeiten auftreten. Zum anderen spielen praktische Einschränkungen eine Rolle wie beispielsweise statische Begrenzungen. Auch mangelndes Wissen, geringe Motivation oder organisatorische Hürden bei Eigentümergemeinschaften führen dazu, dass viele Dächer ungenutzt bleiben.

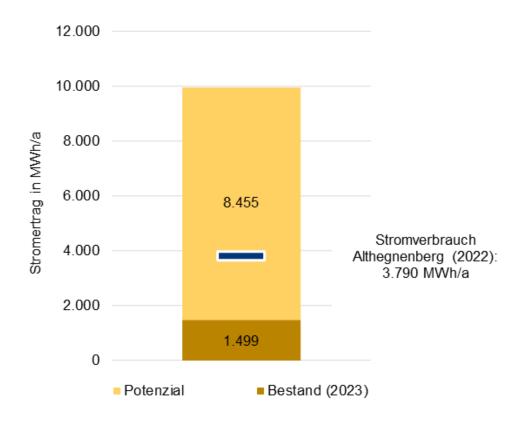


Abbildung 22: Ausbaupotenzial für Dach-Photovoltaikanlagen.

4.3.2. Solarthermie

Solarthermie bezeichnet die Nutzung der Sonnenenergie zur Erzeugung von Wärme. Diese wird durch spezielle Kollektoren eingefangen und in Wärme umgewandelt. Aufgrund der geringen solaren Einstrahlung im Winter kann Solarthermie den Heizwärmebedarf von Gebäuden nicht allein decken. Aus diesem Grund wird diese Technologie häufig vorrangig für die Unterstützung der Warmwasserbereitung in Gebäuden eingesetzt, da dieser Bedarf über das gesamte Jahr hinweg nahezu konstant bleibt und so zumindest während der Sommermonate verbrennungsfrei und regenerativ gedeckt werden kann.

Solarthermie und Photovoltaik werden häufig als konkurrierende Technologien betrachtet. Dabei unterscheiden sie sich in folgenden Aspekten: Solarthermie bietet einen höheren Wirkungsgrad und benötigt weniger Fläche, während Photovoltaik günstiger in der

Anschaffung ist. Betrachtet man jedoch die Gesamtkosten, zeigt sich, dass beide Technologien auf einem vergleichbaren Niveau liegen. Allerdings besteht bei Photovoltaik der klare Vorteil, dass der Strom vielseitig im Gebäude genutzt werden kann und in Kombination mit einer Wärmepumpe einen wesentlich höheren Beitrag bei der Wärmebereitstellung leisten kann als Solarthermie.

Die Solarthermie kann dennoch einen Beitrag zur Dekarbonisierung des Wärmebedarfs leisten. Beispielsweise in Kombination mit Biomasseheizungen kann Solarthermie den Brennstoffeinsatz signifikant reduzieren und die Lebensdauer der Heizanlage verlängern.

Im Folgenden wird das Solarthermiepotenzial ausgewiesen, welches für die unterstützende Warmwasserbereitung im Ein- und kleinen Mehrfamilienhausbestand genutzt werden kann. Zugrunde gelegt wird ein analoges Dachflächenkataster wie für Photovoltaik (vgl. Kapitel 4.3.1). Als Eignungsgrenzwert wurde eine jährliche Globalstrahlung von mindestens 1,025 MWh/m² auf den jeweiligen Kollektorflächen angesetzt. Dieser Benchmark orientiert sich einerseits an den geographischen Gegebenheiten und der solaren Einstrahlung im Landkreis. Gleichzeitig wird durch diesen Grenzwert die technisch-wirtschaftliche Realisierbarkeit für eine ausreichende Wärmeproduktion und die dafür nötige Anlageneffizienz sichergestellt. Für die Ermittlung eines praxisnahen Ausbaupotenzials unter Berücksichtigung einer potenziellen Wirtschaftlichkeit wird ein Deckungsanteil von 50 % des Warmwasserbedarfs für die betrachteten Wohngebäude des Wärmekatasters angenommen. Als geeignet werden abschließend jene Gebäude identifiziert, deren Dachflächen aufgrund von Einstrahlung und Dachflächengröße ausreichen. um den vorgegebenen Deckungsgrad der Warmwassernachfrage im jeweiligen Gebäude zu erreichen.

Im Ergebnis zeigt sich, dass bei etwa 94 % der betrachteten Wohngebäude im Ein- und kleinen Mehrfamilienhausbestand im Verwaltungsgebiet die Nutzung der Dachflächen für solarthermische Anlagen grundsätzlich möglich ist. Unter Annahme des Deckungsgrades von 50 % bezogen auf den Warmwasserbedarf können so in Summe 661 MWh Wärme für den privaten Sektor erzeugt werden. Laut Bestandsanalyse (vgl. Kapitel 2.3) werden bereits 407 MWh Wärme aus Solarthermieanlagen erzeugt und müssen daher von diesem technischwirtschaftlichen Potenzial abgezogen werden. Abzüglich dieses Bestands besteht demnach ein weiteres Ausbaupotenzial von 254 MWh. Insgesamt wäre das ein Beitrag von 1,3 % zur erneuerbaren Deckung des Wärmebedarfs im gesamten Wohnsektor der Gemeinde Althegnenberg.

Darüber hinaus kann Solarthermie auch in Form von Freiflächenanlagen als regenerative Wärmequelle für Fernwärmenetze genutzt werden, da sie Vorlauftemperaturen zwischen 80 °C und 150 °C liefert. Besonders in Kombination mit Biomasseheizkraftwerken stellt dies eine sinnvolle Ergänzung dar. Dennoch sollte auch in diesem Kontext die Konkurrenz zu Freiflächen-Photovoltaik und Wärmepumpen sorgfältig geprüft werden, um optimale Lösungen für die Energiebereitstellung zu finden.

4.3.3. Photovoltaik auf Freiflächen

Freiflächen-Photovoltaikanlagen (FFPV) sind ein wesentlicher Bestandteil der Energiewende und eine effiziente Möglichkeit, zur Erreichung der Klimaziele beizutragen.

Für die Errichtung von FFPV-Anlagen bedarf es meist der Anpassung des Flächennutzungsplans. Grundsätzlich liegt es in der Verantwortung der jeweiligen Kommune, Standorte auszuweisen und dies durch die Änderung des Flächennutzungsplans und ggf. Aufstellung eines Bebauungsplanes planerisch umzusetzen. Ausschlusskriterien für FFPV-Anlagen können u.a. ökologische Belange sein, wie beispielsweise Naturschutzgebiete und Landnutzungskonflikte wie Siedlungsbereiche und bestehende Infrastrukturen.

Im unbeplanten Außenbereich können FFPV derzeit vor allem nach § 35 Abs. 1 Nr. 8 und 9 BauGB²² privilegiert zulässig sein, wenn öffentliche Belange nicht entgegenstehen und die ausreichende Erschließung gesichert ist. Eine solche Privilegierung besteht etwa für FFPV in einem 200 m Korridor jeweils entlang von zweigleisigen Hauptschienenwegen sowie Autobahnen. Außerdem gelten unter bestimmten Voraussetzungen Photovoltaikanlagen kleiner als 2,5 ha als privilegiert, sofern es sich um Photovoltaik-Anlagen gem. § 48 Abs. 1 S. 1 Nr. 5 Buchstabe a bis c EEG (Agri-PV-Anlagen) handelt, die zudem in einem räumlichfunktionalen Zusammenhang mit einem land- oder forstwirtschaftlichen Betrieb stehen und so die landwirtschaftliche Flächennutzung mit der solaren Stromerzeugung kombinieren.

FFPV stehen häufig in einer Flächenkonkurrenz z.B. zu bestehenden Nutzungen wie Landwirtschaft oder naturschutzrechtlichen Belangen. Zudem gilt es die gesellschaftliche Akzeptanz zu berücksichtigen und Abwägungsentscheidungen zu treffen.

Zusätzlich ist die Förderkulisse des Erneuerbare-Energien-Gesetzes (EEG) zu berücksichtigen: Im EEG 2023²³, welches die finanzielle Förderung über eine gesicherte Stromvergütung regelt, wurde eine Flächenkulisse für die Förderung von FFPV definiert, um den Zubau auf bestimmten Flächen zu fördern und damit gezielt zu steuern. Diese Flächenkulisse umfasst 500 Meter breite Korridore entlang von Autobahnen und Hauptschienenwegen, Konversionsflächen und landwirtschaftlich benachteiligte Gebiete. Außerdem werden besondere Solaranlagen, die aufgrund ihrer zweifachen Flächennutzung gefördert werden, bezuschusst. Hierzu zählt die Überdachung von Parkplatzflächen mit PV, die Errichtung von Moor-PV auf bisher landwirtschaftlich genutzten Moorböden unter der Bedingung der Wiedervernässung und Floating-PV auf künstlichen oder erheblich veränderten Gewässern sowie Agri-PV.

Im Rahmen des ENP wurde ein entsprechender Kriterienkatalog vorranging basierend auf dem Rundschreiben des Bayerischen Staatsministeriums für Wohnen, Bau und Verkehr vom 10.12.2021 "Bau- und landesplanerische Behandlung von Freiflächen-Photovoltaikanlagen" erstellt. Im zweiten Schritt wurden daraus Potenzialflächen innerhalb des Landkreises abgeleitet. Die Daten wurden dem Landratsamt zur Verfügung gestellt.

²² BauGB: Baugesetzbuch – BauGB, 56 Auflage 2024, Stand 1.Februar 2024.

²³ EEG 2023 – Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energie-Gesetz – EEG 2023). "Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBI. I S. 1066), das zuletzt durch Art.1 des Gesetzes vom 21. Februar 2025 (BGBI. 2025 I Nr. 52) geändert worden ist.

In Althegnenberg ist der Ausbau weiterer Freiflächen-Photovoltaik geplant. Aufgrund der ländlichen Struktur besteht in der Gemeinde grundsätzlich ein großes Flächenpotenzial. Zudem verlaufen Schienenwege durch die Gemeinde, sodass sowohl die Möglichkeit zur EEG-Förderung²⁴ besteht, als auch der Privilegierung²⁵.

4.3.4. Wasserkraft

Zur Analyse der Ausbaupotenziale im Bereich der Wasserkraft im gesamten Landkreis Fürstenfeldbruck wurde ein Gespräch mit dem Wasserwirtschaftsamt München geführt und erörtert, ob Ausbau- oder Repowering-Potenziale im Bereich der Wasserkraft vorhanden sind. Als Ergebnis lässt sich festhalten, dass keine Potenziale für den Bau weiterer größerer Anlagen vorhanden sind. Darüber hinaus konzentrieren sich aktuelle Bestrebungen des Wasserwirtschaftsamts auf den ökologischen Umbau bestehender Wasserkraftanlagen (Stichwort: Durchlässigkeit). Diese Modernisierungsmaßnahmen können zu Leistungseinbußen bestehender Anlagen führen, sodass mittelfristig auch keine Effizienzsteigerungen angenommen werden können.

4.3.5. Windkraft

Die Windenergie spielt eine zentrale Rolle bei der Erreichung der Klimaziele in Bayern und Deutschland. Moderne Anlagen, die Leistungen von über 6 MW erreichen und eine Nabenhöhe von rund 160 Metern haben, können auch in Schwachwindgebieten wie Südbayern erhebliche Mengen an Energie erzeugen. Fortschritte in der Windtechnologie haben die Effizienz und Wirtschaftlichkeit dieser Anlagen deutlich gesteigert, was ihre Bedeutung im deutschen Energiemix weiter erhöht.

Wichtige Grundlage für den Windkraftausbau in Bayern ist das Wind-an-Land Gesetz, welches ein bundesweites Flächenziel zur Ausweisung von Windenergiegebieten von 2 % ausweist und damit die Bundesländer zur Flächenbereitstellung für Windkraft verpflichtet. Im Landesentwicklungsprogramm Bayern ist das Ziel vorgesehen, Vorranggebiete im erforderlichen Umfang festzulegen. Als Teilflächenziel wird zunächst für jede Regionsfläche 1,1 % bis 31.12.2027 festgelegt. Der gesamte Flächenbeitragswert für Bayern liegt bei 1,8 % bis 2032. Diese 1,8 % der Landesfläche müssen voraussichtlich innerhalb der jeweiligen Planungsregion durch die Ausweisung von Vorrang- und Vorbehaltsgebieten (VRG & VBG) für Windenergie erreicht werden. Durch das Erreichen des Flächenbeitragswertes entfallen außerhalb der VRG und VBG die Privilegierungen für Windenergieanlagen nach §35 Abs. 1 Nr. 5 BauGB, während innerhalb der Vorranggebiete weiterhin Privilegierung besteht. Die Möglichkeit zur Errichtung von Windenergieanlagen außerhalb der Vorranggebiete bleibt weiterhin gem. §35 Abs. 2 BauGB möglich. Zusätzlich können die Kommunen durch Anpassung des Flächennutzungsplanes sowie Aufstellung eines Bebauungsplans die Errichtung von WEA außerhalb der Windenergiegebiete ermöglichen.

²⁴ EEG 2023 – Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energie-Gesetz – EEG 2023). "Erneuerbare-Energien-Gesetz vom 21. Juli 2014 (BGBI. I S. 1066), das zuletzt durch Art.1 des Gesetzes vom 21. Februar 2025 (BGBI. 2025 I Nr. 52) geändert worden ist.
²⁵ BauGB: Baugesetzbuch – BauGB, 56 Auflage 2024, Stand 1.Februar 2024.

Solange der Regionalplan der Region 14 mit Änderung des Kapitels B IV 7 Energieerzeugung mit der Neufassung Teilkapitel B IV 7.2 Windenergie noch erarbeitet wird, sind Windkraftanlagen gemäß Baugesetzbuch privilegiert, wenn keine öffentlichen Belange entgegenstehen und die ausreichende Erschließung gesichert ist. Die Bayerische Bauordnung (BayBO) begrenzt die Privilegierung aktuell auf Vorhaben, die 1.000 m Mindestabstand zu Wohngebäuden einhalten und Voraussetzungen wie beispielsweise Nähe zu Schienenwegen, Autobahn oder Gewerbegebieten erfüllen bzw. es sich um Waldstandorte handelt.

Zum Zeitpunkt der Projektbearbeitung befindet sich die Planungsregion 14 noch im Fortschreibungsverfahren²⁶ des Regionalplanes wobei sieben mögliche Vorranggebieten ganz oder teilweise im Landkreis Fürstenfeldbruck liegen.

Abbildung 23: Schematische Darstellung der Zuständigkeiten der räumlichen Planung. Graphik in Anlehnung an Regionalen Planungsverband München

Im Landkreis wurde eine Windkraftanlage in der Gemeinde Mammendorf 2014 in Betrieb genommen und 2015 eine Anlage in der Gemeinde Maisach. Zum Stichtag 30.05.2025 wurde eine Windkraftanlage in der Gemeinde Egenhofen und vier Windkraftanlagen in der Gemeinde Jesenwang genehmigt. Für zwei Windkraftanlagen in Maisach-Rottbach wurde ein Vorbescheid erteilt. Im Gemeindegebiet der Großen Kreisstadt Fürstenfeldbruck wurde ein Vorbescheid für eine Windkraftanlage erteilt. Weitere vier Windkraftanlagen befinden sich in einem Vorbescheidsverfahren. Für weitere Anlagen im Landkreis liegen die Genehmigungsoder Vorbescheidsanträge im Landratsamt Fürstenfeldbruck zur Bearbeitung vor.

Aufgrund eines privaten Flughafens in Penzing liegen Höhenbeschränkungen für potenzielle Windkraftanlagen in der Gemeinde Althegnenberg aufgrund der Flughöhe vor.

Seite | 32

²⁶ Fortschreibung des Regionalplans München (RP 14); 26. Änderung; Änderung Kapitel B IV 7 Energieerzeugung mit Neufassung Teilkapitel B IV 7.2 Windenergie. Link (zuletzt abgerufen am: 19.03.2025).

4.3.6. Biomasse

Unter Biomasse versteht man sämtliche organische Materialien pflanzlicher oder tierischer Herkunft, die zur Energiegewinnung genutzt werden können. Dazu zählen Rest- und Abfallstoffe aus Land- und Forstwirtschaft, organische Abfälle (auch aus Siedlungen) und Rückstände aus der Landschaftspflege sowie speziell für die Energieerzeugung angebaute Pflanzen. Dieses organische Material kann entsprechend aufbereitet als gasförmiger, flüssiger oder fester Brennstoff genutzt werden. Da landwirtschaftliche Flächen begrenzt sind und konkurrierende Nutzungen bestehen, sollte sich die Energieproduktion vor allem auf die Verwertung von Rest- und Abfallstoffen fokussieren, die nicht anderweitig verwendet werden können. Beispiele hierfür sind Nebenprodukte und Abfälle aus der Holzverarbeitung, der Lebensmittelproduktion und der Landwirtschaft. Die folgende Betrachtung zeigt zunächst das Potenzial für die Gemeinde Althegnenberg auf Basis einer Territorialbilanz, in dem ausschließlich die verfügbaren Ressourcen innerhalb des Verwaltungsgebiets betrachtet werden. Im Bereich Biomasse zeigt sich, dass die Energieversorgung in städtischen Gebieten stark vom Umland abhängt und das nachhaltige Potenzial regionaler Holzressourcen begrenzt ist. Am Ende des Abschnittes wird daher das landkreisweite Potenzial zur Einordnung mitdargestellt.

Biomassepotenzial aus Holz und Grünschnitt

Die Bayerische Forstverwaltung erhebt Potenzialdaten auf kommunaler Ebene zur nachhaltigen energetischen Nutzung von Biomasse aus Wäldern sowie für die Nutzung von Flur- und Siedlungsholz. Dabei wird berücksichtigt, dass der Großteil des Ernteholzes der stofflichen Nutzung zufällt und ausschließlich Derbholz, also Holz das inklusive Rinde einen Durchmesser von mehr als 7 cm aufweist, zur Energieerzeugung genutzt wird. Des Weiteren wird die Grundannahme getroffen, dass nur so viel Holz entnommen und genutzt wird, wie aufgrund von Nährstoff-, Wasser- und Flächenverfügbarkeit nachhaltig reproduziert werden kann.

Ein weiteres Potenzial entsteht durch die Nutzung von Kurzumtriebsplantagen (KUP). Dabei werden schnell wachsende Bäume wie beispielsweise Pappeln auf Flächen mit ausreichender Wasserverfügbarkeit für die energetische Nutzung angebaut. Für die Analyse zieht die bayerische Landesanstalt für Forstwirtschaft landwirtschaftliche Flächen mit verringerter landwirtschaftlicher Produktivität (Ackerzahl < 40) und ausreichend Wasserverfügbarkeit heran. Es gilt zu beachten, dass es sich damit um ein technisches Potenzial handelt. Ökologische, naturschutzfachliche Belange und Flächennutzungskonkurrenzen müssen zusätzlich berücksichtigt werden.

Weiterhin wurden die Potenziale aus anfallendem Grünschnitt und Altholz ermittelt, da auch diese in Biomasse-Heiz(kraft)werken verbrannt werden können. Zur Ermittlung dieses Potenzials werden landesweite Durchschnittswerte herangezogen²⁷ und damit die anfallenden Grünschnitt- und Brennholzmengen berechnet. Die so errechneten Abfallmengen werden unter Einbezug möglicher Brennwerte in erzeugbare Energiemengen umgerechnet.

Seite | 33

²⁷ Bayerisches Landesamt für Umwelt (Hrsg.) (2022): Hausmüll in Bayern: Bilanzen 2022. Augsburg.

Im Ergebnis wird das errechnete Potenzial der bereits in der Kommune genutzten Energie aus Biomasse gegenübergestellt (Abbildung 24). Als Datengrundlage der bestehenden Biomassenutzung dienen die Kaminkehrerdaten, worin die Kennwerte aller Feuerungsstätten der Bestandsgebäude enthalten sind. Im Großteil handelt es sich dabei um Scheitholz-, Pellets- und Hackschnitzelnutzung. Der Ursprung dieser bestehenden Biomassenutzung kann nicht ermittelt werden.

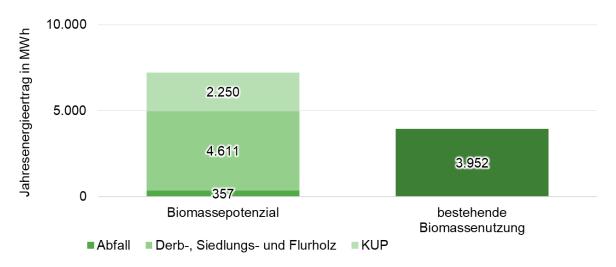


Abbildung 24: Potenzial zur Energieerzeugung aus Biomasse.

Die aktuelle Nutzung von Biomasse (in erster Linie zur Wärmegewinnung durch Holzheizungen) in der Kommune liegt etwa 3.000 MWh unter dem berechneten technischen Potenzial. nennenswerter Ein Anteil des technischen **Potenzials** entfällt Umsetzbarkeit Kurzumtriebsplantagen, deren tatsächliche aufgrund möglicher Flächennutzungskonflikte begrenzt ist.

4.3.7. Biogas

Biogasanlagen sind Anlagen zur Erzeugung von Biogas, einem regenerativen Energieträger, der durch die Vergärung organischer Materialien entsteht. Dabei wird Biomasse in einem kontrollierten Prozess unter Ausschluss von Sauerstoff (anaerob) durch Mikroorganismen zersetzt. Das entstehende Biogas besteht zu einem Großteil aus Methan (CH₄) und Kohlendioxid (CO₂) und kann energetisch genutzt werden. Das Gas kann beispielsweise direkt in einem Blockheizkraftwerk (BHKW) verstromt und die dabei entstehende Wärme genutzt werden. Alternativ kann das Biogas gereinigt und aufbereitet werden, um als Erdgasäquivalent ins Gasnetz eingespeist oder als Treibstoff verwendet zu werden.

Die technischen Potenziale zur Erzeugung von Strom oder Wärme aus Biogas setzen sich aus zwei Quellen zusammen: den im kommunalen Gebiet produzierten, nutzbaren Mengen von Wirtschaftsdüngern und nachwachsenden Rohstoffen.

Dazu werden die Daten der Viehbestände der Gemeinde Althegnenberg herangezogen, welche für das Jahr 2020 vorliegen²⁸. Diese Zahlen werden im Anschluss mit der für die

²⁸ Bayerisches Landesamt für Statistik (Hrsg.) (2022): Statistik kommunal 2023. Eine Auswahl wichtiger statistischer Daten. Fürth.

Tierarten ermittelten, spezifischen Mist- und Gülleproduktion²⁹ verrechnet. Es wird davon ausgegangen, dass 30 % des entstehenden Wirtschaftsdüngers zur Erzeugung von Biogas eingesetzt werden kann. Zur Errechnung der Biogasausbeute werden zusätzlich die spezifischen Gasentstehungsmengen je nach Mist oder Gülle berücksichtigt³⁰. Vorteilhaft ist, dass nach der Vergärung, die Gärreste teils sogar mit verbesserten Düngeeigenschaften auf landwirtschaftliche Flächen ausgebracht werden können.

Die Ermittlung des Potenzials durch nachwachsende Rohstoffe in Form von Energiepflanzen ist umstritten, da deren intensiver Anbau mit vielen Nachteilen einhergeht, darunter eine sehr geringe Flächeneffizienz zur Energieerzeugung sowie zahlreiche ökologische Nachteile aufgrund von großflächigen Monokulturen. Gleichzeitig handelt es sich jedoch um eine regenerative Art der Energiegewinnung, die aufgrund ihrer zeitlichen Flexibilität sehr wertvoll ist und daher nicht vernachlässigt werden sollte. Für die Potenzialausweisung wird angenommen, dass 13 % der verfügbaren Ackerfläche zum Anbau von Energiepflanzen genutzt werden können. Dies entspricht dem aktuellen deutschlandweiten Durchschnitt. Für Bayern gibt das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie einen geringfügig höheren Wert von 14 % im Jahr 2020 an³¹. Für die Potenzialberechnung der Energiemenge wird Silomais als Energiepflanze herangezogen. Mithilfe der mittleren Landkreiserträge der letzten fünf Jahre in Fürstenfeldbruck von Silomais³² kann eine Erntemenge bestimmt werden und eine Energieertragsmenge abgeschätzt werden.

Für die Berechnung des energetischen Potenzials wird angenommen, dass das Biogas durch eine KWK-Anlage verwertet und zu einem Teil in Strom und zu zwei Teilen in Wärme umgewandelt wird. Daraus resultiert die Menge an Energie, die im Verwaltungsgebiet gemäß dem Territorialprinzip durch Biogas gedeckt werden kann. Zudem werden in der Graphik die Strom- und Wärmeerzeugung potenziell bestehender Anlagen gegenübergestellt. Da es in Althegnenberg keine gibt, sind hier auf der rechten Seite des Diagramms keine Balken sichtbar (Abbildung 25).

Die Graphik zeigt, dass ein territoriales technisches Potenzial vorliegt, das noch nicht ausgeschöpft wird.

²⁹ Landesamt für Umwelt, Landwirtschaft und Geologie des Freistaats Sachsen (Hrsg.) (2019): Richtwerte für den monatlichen Wirtschaftsdüngeranfall.

³⁰ Bayerische Landesanstalt für Landwirtschaft (Hrsg.): Biogasausbeuten verschiedener Substrate (Link, zuletzt abgerufen: 19.12.2024).

³¹ Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (Hrsg.): Biomasse – Daten und Fakten. (<u>Link</u>, zuletzt abgerufen: 08.01.2025).

³² Bayerische Landesanstalt für Landwirtschaft (Hrsq.) (2021-2025): Mittlere Landkreiserträge für wichtige Ackerkulturen.

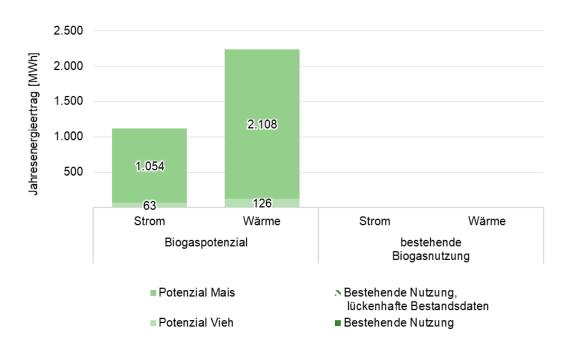


Abbildung 25: Potenzial zur Energieerzeugung durch Biogasanlagen.33

Grenzen der Territorialbilanz - Landkreispotenzial

Es liegt nahe, dass in städtisch geprägten Kommunen die Nutzung von Biomasse und Biogas die Erzeugungsmöglichkeiten innerhalb der eigenen kommunalen Bilanzgrenzen übersteigt. Ähnlich der Stromversorgung ist die Energieversorgung durch Biomasse in städtisch geprägten Gebieten vom Umland abhängig. Daher zeigen folgende zwei Abbildungen das summierte Potenzial des Landkreises. Gegenübergestellt wird die Summe der erzeugten Strom- und Wärmemenge im Landkreis.

Abbildung 26 zeigt, dass die bestehende Biomassenutzung im Landkreis (in erster Linie zur Wärmegewinnung durch Holzheizungen) in Summe unter dem berechneten technischen Potenzial liegt. Etwa die Hälfte des technischen Potenzials entfällt auf Kurzumtriebsplantagen, deren tatsächliche Umsetzbarkeit aufgrund möglicher Flächennutzungskonflikte begrenzt ist. Dafür sollten hier Standorte und Nutzungsintensität mit anderen Flächennutzungsbelangen gut abgewogen werden.

Seite | 36

-

³³ Bei einigen Anlagen konnten keine Daten zur Verfügung gestellt werden, dies ist ggf. durch eine Schraffur gekennzeichnet.

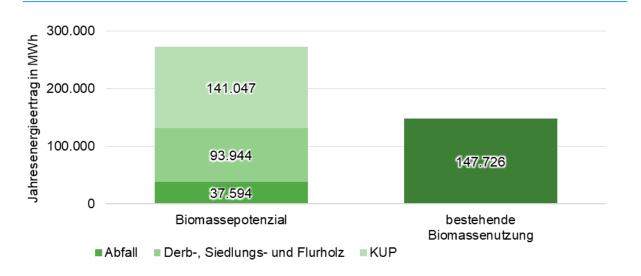


Abbildung 26: Summiertes Potenzial zur Energieerzeugung aus Biomasse im Landkreis Fürstenfeldbruck.

Abbildung 27 zeigt, dass sowohl das technische Wärme- als auch das technische Stromgewinnungspotenzial im Landkreis Fürstenfeldbruck nahezu ausgeschöpft werden. Ein Ausbau der Nutzung ist auf die Ausweitung von Energiepflanzenanbau oder eine Zufuhr von Substraten von außerhalb der Bilanzgrenze angewiesen. Ein mögliches weiteres Potenzial besteht in der Vergärung von Biomüll der Haushalte. Die Einführung der Biotonne im Landkreis Fürstenfeldbruck bietet einen guten Ausgangspunkt zur Nutzung dieses Potenzials.

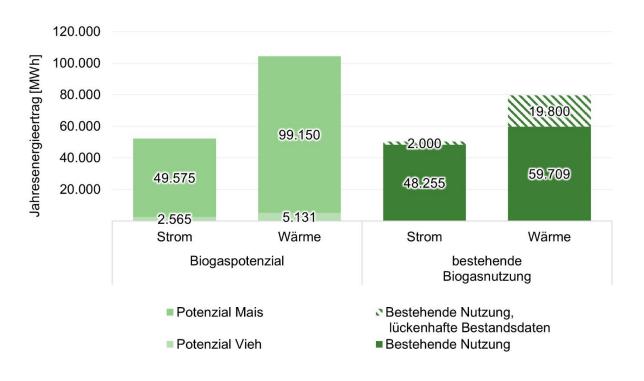


Abbildung 27: Summiertes Potenzial zur Energieerzeugung aus Biogas im Landkreis Fürstenfeldbruck.

4.3.8. Abwärme

Die Daten des Landesamts für Umwelt, die Angaben der Datenerhebungsbögen der Industrieund Gewerbebetriebe sowie die Abfrage der vorhandenen Biogasanlagen haben einige Abwärmequellen im Landkreis ergeben. Diese sind bereits vollständig in Wärmenetze eingebunden. Somit liegt hier kein weiteres Ausbaupotenzial vor.

4.3.9. Abwasserwärme

Integration in den Energienutzungsplan als Schwerpunktprojekt

Das Wärmeplanungsgesetz³⁴ (WPG) verpflichtet Kommunen zur Erstellung einer Kommunalen Wärmeplanung. Das WPG wurde in Bayern durch die Änderung der Verordnung zur Ausführung energierechtlicher Vorschriften (AVEn) vom 18.12.2024 umgesetzt (GVBI. 2024, 651)³⁵. Die §§ 8 ff. AVEn traten zum 02.01.2025 in Kraft. Die Gemeinden in Bayern sind darin als planungsverantwortliche Stellen im Sinne des Wärmeplanungsgesetzes festgelegt worden. Ziel der Wärmeplanung ist es, eine kosteneffiziente und klimafreundliche Wärmeversorgung zu ermitteln.

Ein zu betrachtender Baustein der Wärmeplanung ist die Analyse der Wärmenutzung aus Abwasser und Oberflächengewässern. Da dies im Umfang des Energienutzungsplanes ursprünglich nicht beauftragt war, sollen diese beiden Analysen im Rahmen des Schwerpunktprojektes für den gesamten Landkreis erstellt werden, um einen weiteren Brückenschlag zwischen dem Energienutzungsplan (ENP) und der kommunalen Wärmeplanung (KWP) für alle kreisangehörigen Kommunen zu schaffen. Im Detail sollen geeignete Wärmequellen identifiziert, genehmigungsrechtliche Rahmenbedingungen analysiert und potenzielle Gebiete zur Wärmeabnahme geprüft werden. Durch eine frühzeitige Bereitstellung relevanter Daten erhalten Kommunen die bestmögliche Unterstützung bei der Durchführung ihrer Wärmeplanung. Die Untersuchung schafft eine belastbare Grundlage für zukünftige Planungen zur kommunalen Energieversorgung.

Potenzialanalyse Abwasserwärme

Im Rahmen des Energienutzungsplanes wurde eine erste Potenzialanalyse zur Nutzung der Abwasserwärme für die Städte und Gemeinden im Landkreis Fürstenfeldbruck durchgeführt. Die Ergebnisse dienen zum einen als Basis für die Ausschreibung der kommunalen Wärmeplanung und unterstützen hier die Definition des Leistungsumfanges, zum anderen als Planungsgrundlage für bearbeitende Ingenieurbüros sowie als digitale, fortschreibbare Grundlage für die künftige Fortschreibung der Wärmeplanung. Ein ausführliches Berichtskapitel dieses Schwerpunktprojekts ist im Bericht des Landkreises enthalten. Für die Gemeinde Althegnenberg fokussiert sich die Potenzialanalyse auf die drei wesentlichen Nutzungsmöglichkeiten von Abwasserwärme:

³⁴ Gesetz für die Wärmeplanung und zur Dekarbonisierung der Wärmenetze (Wärmeplanungsgesetz – WPG). 20.12.2023 (BGBI.2023 I Nr.394)

³⁵ Verordnung zur Änderung der Verordnung zur Ausführung energiewirtschaftlicher Vorschriften vom 18.12.2024. Bayerisches Gesetz- und Verordnungsblatt Nr. 24/2024.

Nutzungsmöglichkeit in kommunalen Liegenschaften in der Nähe des Kanalnetzes

In einem ersten Schritt wurden jene kommunalen Liegenschaften identifiziert, welche in räumlicher Nähe von potenziell geeigneten Abschnitten des Kanalnetzes mit einem Durchmesser von größer oder gleich DN 400 liegen. Nachstehende Kartendarstellung zeigt die Standorte der kommunalen Liegenschaften in Relation zum bestehenden Kanalnetz.

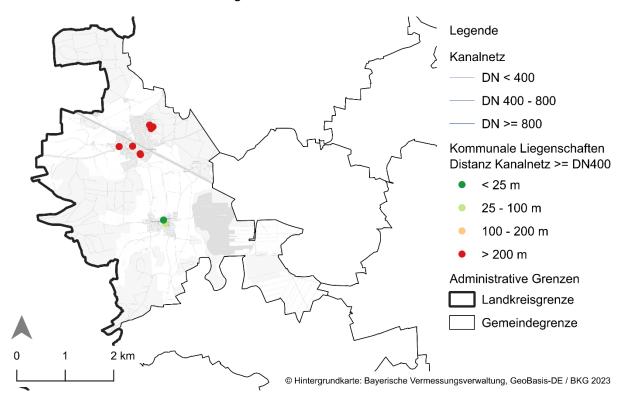


Abbildung 28: Kommunale Liegenschaften in räumlicher Nähe zum Kanalnetz.

Die Kategorisierung der Distanzen zum Kanalnetz stellt sich wie folgt dar:

Tabelle 5: Kategorisierung der Distanzen zum Kanalnetz.

Distanzbereich

Diotanizacioni	mit größer oder gleich DN 400
<= 25 m	Hohe Eignung, räumliche Nähe Kanalnetz am Straßenabschnitt anliegend
25 - 100 m	Bedingte Eignung, räumliche Nähe Kanalnetz im Bereich des Baublocks anliegend
100 - 200 m	Voraussichtlich keine Eignung, hohe Distanz geeignetes Kanalnetz in zu hoher Distanz zur Liegenschaft
> 200 m	keine Eignung, sehr hohe Distanz geeignetes Kanalnetz in zu hoher Distanz zur Liegenschaft

Rückschluss auf Eignung durch räumliche Nähe zu Kanalnetz

Im Verwaltungsgebiet wurden folgende Liegenschaften identifiziert, die an Kanalnetzen mit größer oder gleich DN 400 in einer Distanz von bis zu 100 m liegen:

Tabelle 6: Liste der identifizierten kommunalen Liegenschaften in räumlicher Nähe zum Kanalnetz.

Liegenschaft	Distanz zum Kanalnetz in m
Feuerwehrgerätehaus	8
Alte Schule	45

Für die dargestellten Liegenschaften kann im Zuge der Wärmeplanung eine Detailprüfung nach folgendem Schema erfolgen:

I. Erfassung des Heizsystems der Liegenschaft

- Aufnahme der eingesetzten Endenergieträger, der Leistung der Heizanlage, der Vorlauftemperaturen, der Wärmeverteil- und Übergabesysteme etc.
- Erfassung der Wärmeverbrauchsdaten der letzten drei Jahre
- Wenn in der Liegenschaft fossile Energieträger zur Beheizung eingesetzt werden und die Wärmeverteil- und Übergabesysteme für den Einsatz einer Wärmepumpe geeignet sind, ist eine weitergehende Prüfung der Machbarkeit empfohlen.
- Mit einer ersten Abschätzung der benötigten Wärmepumpenleistung (aus den Daten zur Liegenschaft) kann die benötigte Wärmeentzugsleistung aus dem Kanal und damit die nötige Dimension des Wärmetauschers nach folgender Formel abgeschätzt werden:

$$W_{ABW} = P_{WP} * \left(\frac{JAZ - 1}{JAZ} \right)$$
 W_{ABW} Wärmeentzugsleistung Abwasser P_{WP} Heizleistung Wärmepumpe JAZ Jahresarbeitszahl Wärmepumpe

II. Rücksprache mit Betreiber von Kanalnetz und Kläranlage mit Datenerhebung

- Kanalnetz: Prüfung, ob die Möglichkeit zur Integration eines Wärmetauschers am Standort möglich ist.
- Aus der vorhergehenden Abschätzung ergibt sich die erforderliche Dimension des Wärmetauschers. Ist eine Integration in eine nahegelegene Haltung nicht möglich, ist das Projekt nicht weiter zu verfolgen.
- Kanalnetz: Abfrage des Trockenwetterabflusses und der Abflussmengen am Standort bzw. der nächstgelegenen Haltung zur Berechnung der Entzugsleistung
- Die Wärmeleistung, die dem Kanal entzogen werden kann, ergibt sich wie folgt:

$$W_{ABW} = \dot{V}_{a,b} * \rho * c_p * \Delta T$$
 W_{ABW} Wärmeentzugsleistung Abwasser Volumenstrom (Durchfluss) Schmutzwasser / Fremdwasser ρ Dichte Wasser c_p Spezifische Wärmekapazität Wasser

Ist die errechnete, potenzielle Entzugsleistung größer oder gleich der Entzugsleistung, die von der Wärmepumpe benötigt wird, zeigt dies eine grundsätzliche Machbarkeit.

• Kläranlage: Anfrage beim Betreiber der Kläranlage, ob die abgeschätzte Temperaturabsenkung am Standort bzw. in der Haltung für den Betrieb der Kläranlage tolerabel ist.

Nutzung für Quartiere / Wärmenetzgebiete in der Nähe des Kanalnetzes

In der kommunalen Wärmeplanung stellt sich die Wärmenetzeignung von Gebieten mitunter über deren Wärmedichte in MWh/(ha a) dar. Im Rahmen des Energienutzungsplanes erfolgte eine wärmeplanungskonforme Einteilung des beplanten Gebietes mit entsprechender Ausweisung der Wärmedichte (vergleiche Kapitel 4.4).

Ausgehend von Gebieten mit einer Wärmedichte von über 175 MWh/(ha a) – und damit nach Leitfaden Wärmeplanung³⁶ einer Eignung für den Aufbau von Wärmenetzen im Bestand – welche an einem potenziell geeigneten Kanalabschnitt mit einem Mindestdurchmesser größer oder gleich DN 800 liegen, ergeben sich für das Verwaltungsgebiet nachfolgend dargestellte Gebiete zur grundsätzlichen Eignungsprüfung im Zuge der kommunalen Wärmeplanung:

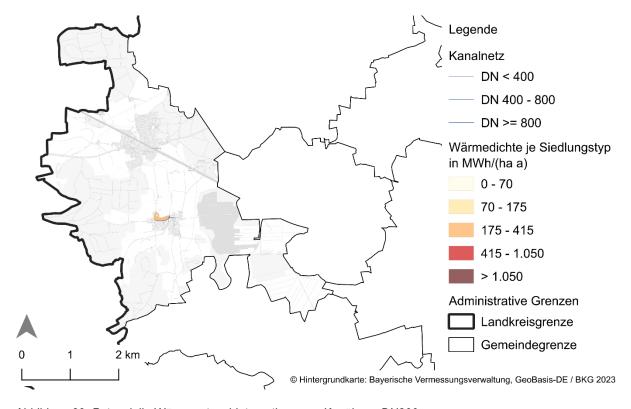


Abbildung 29: Potenzielle Wärmenetzgebiete entlang von Kanälen > DN800.

Weitestgehend analog zur Potenzialanalyse für kommunale Liegenschaften kann eine erste Abschätzung des Potenzials für die Versorgung von Quartieren erfolgen:

³⁶ Leitfaden Wärmeplanung, Hrsg. Bundesministerium für Wirtschaft und Klimaschutz (BMWK) und Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen (BMWSB), Juni 2024

I. Erfassung der Wärmenachfrage und der benötigten Heizleistung für Quartier

- Prüfung, ob ein Wärmenetz im Quartier grundsätzlich aufgebaut werden kann (Eigentumsstruktur, Lage der Liegenschaften, Spartenkonkurrenz, etc.)
- Nur wenn der Verlegung eines Wärmenetzes nichts entgegensteht, ist das Projekt weiter zu verfolgen
- Abfrage / Voranfrage der Anschlussbereitschaft bei Gebäudeeigentümern im Quartier
- Nur wenn eine ausreichende Anschlussquote gegeben ist, ist das Projekt weiter zu verfolgen
- Aufnahme der eingesetzten Endenergieträger, der Leistung der Heizanlage, der Vorlauftemperaturen, der Wärmeverteil- und Übergabesysteme etc. in den Liegenschaften des Quartiers
- Erfassung der Wärmeverbrauchsdaten der letzten drei Jahre der Liegenschaften des Quartiers
- Wenn überwiegend fossile Energieträger zur Beheizung im Quartier eingesetzt werden und die Wärmeverteil- und Übergabesysteme der Gebäude für den Einsatz von Wärmepumpen geeignet sind, ist eine weitergehende Prüfung der Machbarkeit empfohlen.
- Mit einer ersten Abschätzung der benötigten Wärmeerzeugerleistung (aus den Daten zu Liegenschaften und erster Netztopologie) kann die benötigte Wärmeentzugsleistung aus dem Kanal und damit die nötige Dimension des Wärmetauschers nach folgender Formel abgeschätzt werden:

$$W_{ABW} = P_{WP} * \left(\frac{JAZ - 1}{JAZ} \right)$$
 W_{ABW} Wärmeentzugsleistung Abwasser P_{WP} Heizleistung Wärmepumpe JAZ Jahresarbeitszahl Wärmepumpe

II. Rücksprache mit Betreiber von Kanalnetz und Kläranlage mit Datenerhebung

- Kanalnetz: Prüfung, ob die Möglichkeit zur Integration eines Wärmetauschers am Standort möglich ist.
- Aus der vorhergehenden Abschätzung ergibt sich die erforderliche Dimension des Wärmetauschers. Ist eine Integration in eine nahegelegene Haltung nicht möglich, ist das Projekt nicht weiter zu verfolgen.
- Kanalnetz: Abfrage des Trockenwetterabflusses und der Abflussmengen am Standort bzw. der nächstgelegenen Haltung zur Berechnung der Entzugsleistung
- Die Wärmeleistung, die dem Kanal entzogen werden kann, ergibt sich wie folgt:

$$W_{ABW} = \dot{V}_{a,b} * \rho * c_p * \Delta T$$
 Wärmeentzugsleistung Abwasser Volumenstrom (Durchfluss) Schmutzwasser / Fremdwasser ρ Dichte Wasser c_p Spezifische Wärmekapazität Wasser

Ist die errechnete, potenzielle Entzugsleistung größer oder gleich der Entzugsleistung, die von der Wärmepumpe / des Wärmeerzeugers benötigt wird, zeigt dies eine grundsätzliche Machbarkeit.

• Kläranlage: Anfrage beim Betreiber der Kläranlage, ob die abgeschätzte Temperaturabsenkung am Standort bzw. in der Haltung für den Betrieb der Kläranlage tolerabel ist.

Nutzung von Großwärmepumpen an Kläranlagenstandorten für Wärmenetze

Nach Leitfaden Wärmeplanung³⁷ ist eine Nutzung des Abwassers im Auslauf einer Kläranlage dann in Betracht zu ziehen, wenn das technische Potenzial geteilt durch die notwendige Transportdistanz (Luftlinie) mindestens 1 MWh / km beträgt.

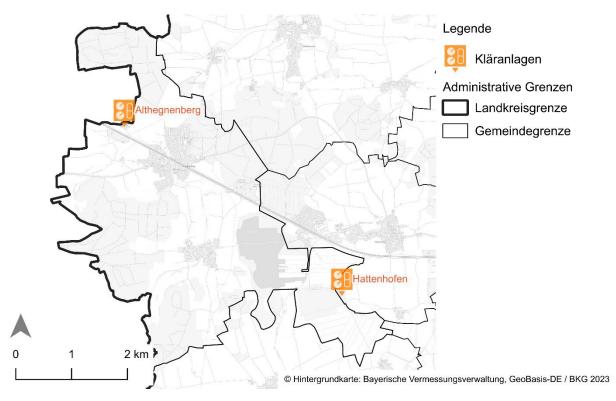


Abbildung 30: Darstellung der erhobenen Kläranlagen.

Für folgende Kläranlagen im Gemeindegebiet wurden Daten erhoben und eine potenzielle, mittlere Wärmeentzugsleistung aus dem Abfluss sowie die entsprechende Wärmeleistung einer Wärmepumpe abgeschätzt:

Tabelle 7: Liste der erhobenen Kläranlagen.

Kläranlage	Temperaturbereich	Trockenwetterabfluss	Wärmeentzugsleistung	Wärmeleistung
	Abfluss	in l/s	Abwasser in kW	Wärmepumpe in kW
Althegnenberg	4 bis 22 °C	10	170	260

³⁷ Leitfaden Wärmeplanung, Hrsg. Bundesministerium für Wirtschaft und Klimaschutz (BMWK) und Bundesministeriums für Wohnen, Stadtentwicklung und Bauwesen (BMWSB), Juni 2024

Die Wärmeentzugsleistung ergibt sich dabei wie folgt:

$$W_{ABW} = \dot{V}_{a,b} * \rho * c_p * \Delta T$$
 W_{ABW} Wärmeentzugsleistung Abwasser Volumenstrom (Durchfluss) Schmutzwasser / Fremdwasser ρ Dichte Wasser c_p Spezifische Wärmekapazität Wasser

Die Leistung der Wärmepumpe ergibt sich aus:

$$P_{WP} = W_{ABW} * \left(rac{JAZ}{JAZ - 1}
ight)$$
 W_{ABW} Wärmeentzugsleistung Abwasser P_{WP} Heizleistung Wärmepumpe JAZ Jahresarbeitszahl Wärmepumpe

Das dargestellte, überschlägige Potenzial in der Kläranlage sollte insbesondere im Kontext möglicher notwendiger Optimierungen der Anlage betrachtet werden. Der Eigenbedarf an Energie in der Kläranlage ist zu berücksichtigen.

4.3.10. Umweltwärme aus Oberflächengewässern

Die thermische Nutzung von Oberflächengewässern mittels Wärmepumpen ermöglicht eine nachhaltige und wirtschaftliche Wärmeversorgung. Dabei entzieht eine Wärmepumpe dem Gewässer Wärme über einen Wärmetauscher und hebt das Temperaturniveau mithilfe eines Kältekreislaufs an. Diese Technologie eignet sich sowohl für Einzelgebäude als auch für Wärmenetze³⁸.

Für die Analyse der thermischen Nutzung von Oberflächengewässern wurden aufgrund der Datenverfügbarkeit die Gewässer Glonn, Maisach und Amper betrachtet. Das Potenzial der Stillgewässer wird aufgrund fehlender Datengrundlage qualitativ analysiert. Die Ergebnisse dieses Schwerpunktprojekts werden aufgrund der kommunenübergreifenden Relevanz in dem Bericht des Landkreises ausführlich dargestellt. Zusammenfassend wird das Potenzial der thermischen Nutzung von Oberflächengewässern anhand folgender Kriterien für die kreisangehörigen Kommunen bewertet:

- 1. Vorliegen eines der untersuchten Gewässer im Verwaltungsgebiet
- 2. Soweit ein Gewässer vorhanden ist: räumliche Nähe von bestehenden Querbauten (z.B. Wehre, Laufwerke) zu Wärmesenken. Durch die Nutzung von Bestandsstrukturen wie Querbauten können zusätzliche Eingriffe in die Umwelt minimiert werden. Grundsätzlich kann die Nutzung von Gewässern zur Wärmeentnahme auch unabhängig von Querbauwerken denkbar sein. Dies unterliegt stets Einzelfallentscheidungen.

Seite | 44

³⁸ FfE (2024): Wärmepumpen an Fließgewässern – Analyse des theoretischen Potenzials in Bayern.

Zusammenfassend für die Gemeinde Althegnenberg ist festzuhalten:

In der Gemeinde Althegnenberg besteht kein Potenzial der Wärmenutzung aus Oberflächengewässern.

4.3.11. Kraft-Wärme-Kopplung

Der Einsatz der Kraft-Wärme-Kopplung (KWK) hat als Brückentechnologie eine bedeutende Rolle in der Energiewende gespielt. KWK-Anlagen nutzen den eingesetzten Brennstoff – meist Erdgas – mit einem Wirkungsgrad von bis zu 90 % zur gleichzeitigen Erzeugung von Wärme und Strom. Damit leisten sie einen Beitrag zu einer effizienteren Energieversorgung. Mittelfristig eröffnen Wasserstoff und synthetische Kraftstoffe potenziell die KWK-Technologie. Allerdings existiert bislang Einsatzmöglichkeiten für keine flächendeckende Versorgungsstrategie für diese Energieträger, da ihre Herstellung energieintensiv und technisch herausfordernd ist. Angesichts des kleiner werdenden Zeitraums zur Umstellung auf erneuerbare Energien können fossile KWK-Anlagen lediglich als temporäre Lösung betrachtet werden, die inzwischen in der Neuanschaffung nicht empfohlen werden kann.

4.3.12. Oberflächennahe Geothermie

Der Begriff "Geothermie" oder "Erdwärme" beschreibt die in Form von Wärme gespeicherte Energie unterhalb der Oberfläche der festen Erde³⁹. Prinzipiell muss bei der geothermischen Energiegewinnung zwischen zwei verschiedenen Arten, nämlich der oberflächennahen Geothermie und der Tiefengeothermie (vgl. Kapitel 4.3.13) unterschieden werden.

Die **oberflächennahe Geothermie** umfasst dabei die obersten Bereiche bis ca. 400 m Tiefe. Sie stellt in Kombination mit Wärmepumpen eine besonders umweltfreundliche und effiziente Möglichkeit zur Wärmeversorgung von einzelnen Gebäuden oder kleineren Wärmenetzen mit geringerem Heizwärmebedarf dar. Die Nutzung erfolgt über den Wärmeentzug aus oberflächennahen Schichten durch den Einsatz verschiedener Technologien, wie Erdwärmekollektoren, Erdwärmesonden oder der Nutzung des Grundwassers über Grundwasserbrunnen.

Die Potenzialanalyse erfolgte flurstückscharf, und berücksichtigt die geologischen, hydrogeologischen und geothermischen Untergrundbedingungen. Weitergehende Einschränkungen durch bestehende infrastrukturelle Ausschlussflächen wie Tunnel, Tiefgaragen oder unterirdische Gebäude sind nicht berücksichtigt und müssen im Einzelfall geprüft werden. Details zur Potenzialermittlung sind der Studie zur bayernweiten, räumlich detaillierten Bestimmung des umsetzbaren Potenzials der oberflächennahen Geothermie⁴⁰ zu entnehmen.

³⁹ StMUGV & StMWIVT (Hrsg.) (2007): Oberflächennahe Geothermie. München.

⁴⁰ Technische Universität München, ENIANO GmbH, Friedrich-Alexander-Universität Erlangen-Nürnberg (Hrsg.) (2024): Bayernweite, räumlich detaillierte Bestimmung des umsetzbaren Potenzials der oberflächennahen Geothermie zur Einbindung in den Energie-Atlas Bayern: Abschlussbericht. München, Erlangen.

Die Potenzialanalyse zur Nutzung der oberflächennahen Geothermie wird getrennt nach Erdwärmekollektoren, Grundwasserwärmepumpen und Erdwärmesonden vorgenommen:

Erdwärmekollektoren nutzen die Wärme, die in den obersten 10 m Tiefe des Untergrundes gespeichert ist. Damit handelt es sich um die am nächsten an der Oberfläche verbauten geothermischen Systeme, weshalb sie auch unter dem Begriff "oberflächennaheste Erdwärmesysteme" bekannt sind. Die Kollektoren sind geschlossene Systeme, die dem Boden Wärme mithilfe von Kunststoffrohren entziehen. Die Leitungen werden in unterschiedlichen Formen (flächenhaft, korbförmig, in Gräben) unterhalb der Frostgrenze im Boden verlegt und beinhalten meist ein Wasser-Frostschutzmittel-Gemisch (Sole). Die verfügbare Wärme ergibt sich aus der Wechselwirkung des Bodens mit der Atmosphäre und der Sonnenstrahlung sowie aus dem Einfluss des Niederschlages. Dadurch wird die Leistung der Erdwärmekollektoren sowohl von der lokalen Bodenbeschaffenheit als auch maßgeblich durch das lokale Klima bestimmt. Der typische Aufbau eines Erdwärmekollektors ist in Abbildung 31 dargestellt. Eine Genehmigungspflicht gibt es nur, wenn sie im Grundwasser stehen.

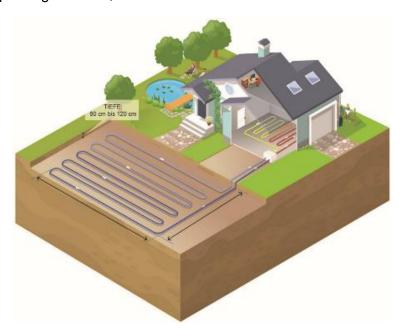


Abbildung 31: Der typische Aufbau eines Erdwärmekollektors (Bildquelle: Interreg Alpine Space Programme, Projekt GRETA).

angewandte Methodik zur Ermittlung des Potenzials für die Nutzung Erdwärmekollektoren basiert auf der VDI 4640, diese gibt abhängig von den Systemparametern Klimazone, Bodenart, Wassergehalt und Volllaststunden Entzugsleistungen für Erdwärmekollektoren an. Über die ermittelte, potenzielle Kollektorfläche je Flurstück wurde das Potenzial jedes Standortes bzw. für jedes im Wärmekataster abgebildete Gebäude abgeleitet. Am wichtigsten für die Potenzialanalyse ist hierbei die Wärmeleitfähigkeit des Bodens. Am besten geeignet sind daher Flächen mit wenig Gefälle und optimale Bodeneigenschaften. Die Kollektoren haben einen Flächenbedarf der ca. dem 1,5 bis 2,5-fachen der zu beheizenden Wohnfläche entspricht. Die individuelle Flächenverfügbarkeit z.B. aufgrund von Bewuchs, Gartennutzung oder Versiegelungsgrad auf jedem einzelnen Grundstück kann nicht vorab geprüft werden.

Abbildung 32 zeigt das Entzugspotenzial von Erdwärmekollektoren in der Gemeinde Althegnenberg. Für eine bessere Kartenlesbarkeit sind in der Abbildung ausschließlich die Potenziale von bebauten Flurstücken und geplanten Neubaugebieten dargestellt. Die Potenzialberechnung erfolgte jedoch flächendeckend auch außerhalb von Siedlungsgebieten und ist entsprechend vollumfänglich in der Datenabgabe an das Landratsamt Fürstenfeldbruck enthalten.

Aufgrund der wenigen technischen Einschränkungen bei Erdwärmekollektoren zeigt sich in den meisten Gebieten ein insgesamt hohes Potenzial. Es wird zudem die Anforderung einer ausreichenden Platzverfügbarkeit für die Nutzung von Erdwärmekollektoren ersichtlich: besonders in dicht besiedelten Bereichen mit geringerer Grundstücksflächenverfügbarkeit verringert sich die potenzielle Wärmeentzugsleistung. Im Vergleich dazu weisen vor allem die größeren Flurstücke ein erkennbar höheres Potenzial auf.

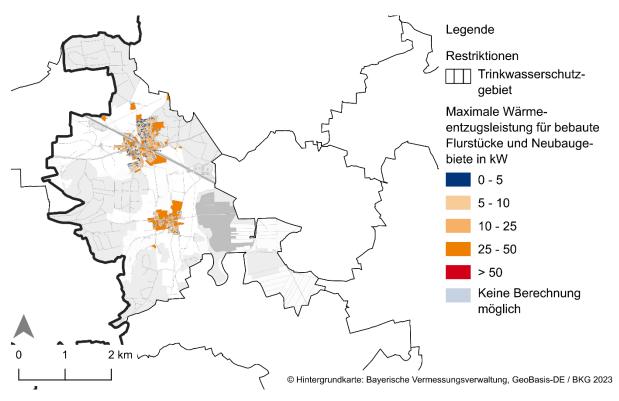


Abbildung 32: Potenzialkarte für Erdwärmekollektoren.

Insgesamt zeigt sich im Siedlungsbereich der Gemeinde Althegnenberg ein hohes Wärmeentzugspotenzial für Erdwärmekollektoren. Die Berechnung erfolgt auf Grundlage eines geologischen Untergrundmodells der Friedrich-Alexander-Universität. In einigen Bereichen des Landkreises können keine Entzugsleistungen berechnet werden. Diese Flächen sind ggf. hellblau in der Karte gekennzeichnet.

Grundwasserwärmepumpen sind offene Systeme, welche Wärme direkt aus dem Grundwasser entziehen. Das Grundwasser wird dem Grundwasserleiter durch einen

Förderbrunnen mit einer Unterwassertauchpumpe entnommen, passiert den quellenseitigen Wärmetauscher einer Wärmepumpe zur Erzeugung von Heizwärme und wird nach der niedrigerer Temperatur über einen thermischen Nutzung mit Injektionsbrunnen (Schluckbrunnen) dem Grundwasserleiter wieder zugeführt. Der typische Aufbau einer Grundwasserwärmepumpe ist in Abbildung 33 dargestellt. Die ganzjährig stabile Temperatur des Grundwassers ermöglicht eine zuverlässige Energiequelle, die unabhängig von saisonalen Schwankungen ist. Auch diese Technologie kann für die Beheizung von Einzelgebäuden oder für die Versorgung kleinerer Wärmenetzgebiete genutzt werden. Die Wirtschaftlichkeit hängt dabei stark von der benötigten Brunnentiefe, aber auch der Anzahl an versorgten Gebäuden ab. Diese Technologie erfordert umfangreiche Planung und Erkundung, da eine Genehmigungspflicht besteht, die in der Regel durch die örtliche Wasserbehörde erteilt wird. Zentralen Aspekt bei der Planung bildet der erforderliche Brunnenabstand: Brunnenpaare müssen in ausreichendem Abstand zueinander oder zu weiteren Brunnenpaaren geplant werden, da es sonst zu einer Reduktion der Effizienz der Grundwasserwärmepumpen oder gar zu einem hydraulischen Kurzschluss im Brunnensystem kommen kann.

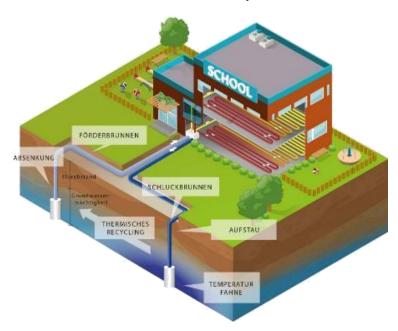


Abbildung 33: Typischer Aufbau einer Grundwasserwärmepumpe mit Förder- und Schluckbrunnen (Bildquelle: Interreg Alpine Space Programme, Projekt GRETA).

Die angewandte Methodik zur Ermittlung des Potenzials für die thermische Nutzung des Grundwassers basiert auf der VDI 4640. Auf Basis von standortscharfen Grundwasserdaten wurden potenzielle Entzugsleistungen von Grundwasserwärmepumpen für jedes Flurstück abgeleitet. Darin werden nicht nur die standortscharfen Grundwasserdaten berücksichtigt sondern auch der potenzielle Abstand der Grundwasserbrunnen innerhalb des Flurstücks. Abbildung 34 zeigt das Entzugspotenzial von Grundwasserwärmepumpen in der Gemeinde Althegnenberg. Für eine bessere Kartenlesbarkeit sind in der Abbildung ausschließlich die Potenziale von bebauten Flurstücken und geplanten Neubaugebieten dargestellt. Die Potenzialberechnung erfolgte jedoch flächendeckend auch außerhalb von Siedlungsgebieten

und ist entsprechend vollumfänglich in der Datenabgabe an das Landratsamt Fürstenfeldbruck enthalten.

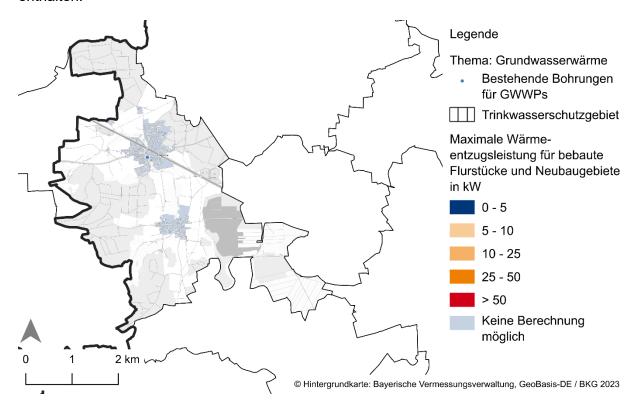


Abbildung 34: Potenzialkarte für Grundwasserwärmepumpen.

Gemäß den Daten des Landratsamtes sind zum Stichtag 01.01.2025 Grundwasserwärmepumpen genehmigt worden. Das Landesamt für Umwelt weist eine Bohrung für Grundwasserwärmepumpen im Betrachtungsgebiet aus, die in der Karte dargestellt sind (vgl. Abbildung 34). Da es sich bei den Angaben des Landratsamtes um genehmigte Anlagen handelt, gelten diese als verlässlichere Grundlage für die Bewertung der tatsächlichen Nutzung von Grundwasserwärmepumpen. Die Berechnung des Potenzials erfolgt aufgrund eines hydrogeologischen Untergrundmodells der Technischen Universität München. In einigen Bereichen des Landkreises können keine Entzugsleistungen berechnet werden. Diese Flächen sind ggf. hellblau in der Karte gekennzeichnet. Generell ist zu erwähnen, dass für die Potenzialabschätzung der thermischen Grundwassernutzung von grundsätzlich konservativen Annahmen bezüglich des Grundwasserkörpers ausgegangen wird. Die Einsatzfähigkeit von Grundwasserwärmepumpen ist jedoch stark von lokalen Gegebenheiten beeinflusst und bedarf stets einer Einzelfallprüfung.

Erdwärmesonden entnehmen ähnlich den Flächenkollektoren dem Erdreich über eine Wärmeträgerflüssigkeit Energie. Im Gegensatz zum Kollektor werden bei Erdwärmesonden die Leitungen jedoch durch Bohrungen vertikal in den Boden eingebracht und erreichen dabei Tiefen zwischen 30 und 100 Metern. Die Länge der Bohrlöcher hängt dabei vom Wärmebedarf, der Untergrundbeschaffenheit und den genehmigungsrechtlichen Vorgaben ab.

In einem geschlossenen Kreislauf fließt ein Wärmeträgermedium und transportiert Wärme aus dem Untergrund zum Verdampferkreislauf einer Wärmepumpe (vgl. Abbildung 35). Kleinanlagen (nach VDI 4640) mit maximal 30 kW Heizleistung der angeschlossenen Wärmepumpe umfassen von einer bis zu ca. sechs Erdwärmesonden. Ein Einfamilienhaus mit ca. 10 kW Heizleistungsbedarf benötigt in der Regel eine oder zwei Sonden.

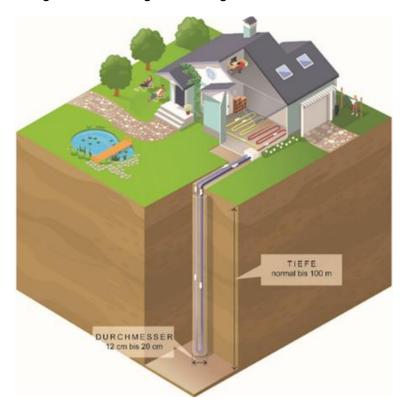


Abbildung 35: Typischer Aufbau einer Erdwärmesonde (Bildquelle: Interreg Alpine Space Programme, Projekt GRETA).

Die Erdwärmesonden können entweder dezentral für einzelne Gebäude oder auch in größeren Sondenfeldern zur Versorgung mehrerer Gebäude genutzt werden. Durch die Abkühlung des umliegenden Erdreichs bei der Wärmeentnahme ist dabei auf ausreichenden Abstand zwischen den einzelnen Bohrungen zu achten, da sich sonst die Effizienz der einzelnen Sonden reduziert.

Das dargestellte Potenzial geht aus Karten des Bayerischen Landesamtes für Umwelt hervor, welches die Nutzungsmöglichkeit für Erdwärmesonden publiziert. Dabei werden folgende Gebietskategorien differenziert:

- Gebiete, in denen vor dem Bau von Erdwärmesonden eine Prüfung durch das zuständige Wasserwirtschaftsamt notwendig ist
- Gebiete, in denen von vorneherein der Bau von Erdwärmesonden aufgrund von Gewässern, hydrogeologischen, geologischen und wasserwirtschaftlichen Bedingungen oder Trinkwasserschutzgebieten ausgeschlossen ist

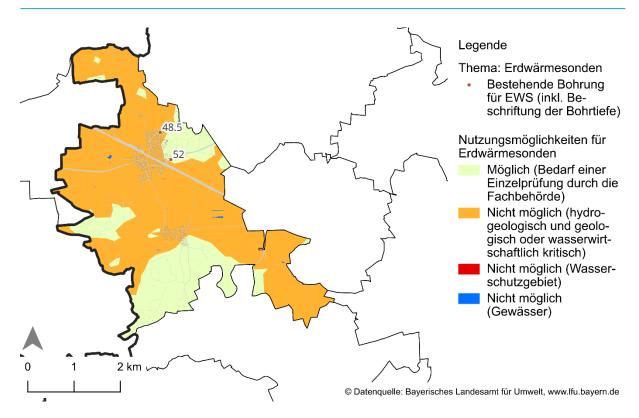


Abbildung 36: Potenzialkarte für Erdwärmesonden.

Gemäß den Daten des Landratsamtes sind zum Stichtag 01.01.2025 keine Erdwärmesondensysteme genehmigt worden. Das Landesamt für Umwelt weist ca. 2 einzelne Erdwärmesondenbohrungen aus, die in der Karte dargestellt sind (vgl. Abbildung 36). Da es sich bei den Angaben des Landratsamtes um genehmigte Anlagen handelt, gelten diese als verlässlichere Grundlage für die Bewertung der tatsächlichen Nutzung Erdwärmesondensystemen. Die Möglichkeit zum Bau von Erdwärmesonden ist laut dem Landesamt für Umwelt im Siedlungsbereich zum Großteil nicht möglich oder in einigen Bereichen (unter Vorbehalt einer Einzelfallprüfung) gegeben.

Zusammenfassung Oberflächennahe Geothermie

Eine Quantifizierung des Potenzials ist ebenso wie bei Luftwärmepumpen nicht sinnvoll, da es sich um ein nahezu uneingeschränktes Potenzial handelt und den Einzelfallentscheidungen der Gebäudeeigentümer unterliegt. Bei der Bewertung der oberflächennahen Geothermie ist zu beachten, dass die wirtschaftliche Umsetzbarkeit oft einen erheblichen einschränkenden Faktor darstellt. Methodisch kann dies nur teilweise berücksichtigt werden, beispielsweise durch die Einbeziehung maximaler Grundwasserbrunnentiefen oder begrenzter Bohrtiefen für Sonden.

Grundsätzlich kann davon ausgegangen werden, dass eine erdgekoppelte Wärmepumpe bei vorhandenem Nutzungspotenzial wirtschaftlich realisierbar ist. In der Planungsphase sollte stets eine Einzelfallbewertung der Wirtschaftlichkeit erfolgen, bei der auch alternative Lösungen und die jeweils aktuellen Fördermöglichkeiten berücksichtigt werden.

4.3.13. Tiefe Geothermie

Die Tiefengeothermie dringt tiefer in das Erdreich vor als die oberflächennahe Geothermie. Aktuell liegt die technische Grenze bei etwa 7.000 m. Bei der Tiefengeothermie werden grundsätzlich zwei Arten, die hydrothermale und die petrothermale Energiegewinnung unterschieden. Bei ersterer werden Heißwasservorkommen mit Temperaturen von ca. 40 bis über 100 °C genutzt, während die petrothermale Energiegewinnung die in den Gesteinen gespeicherte Energie (Hot-Dry-Rock) nutzt. In der Regel kommt in Bayern die hydrothermale Geothermie zum Einsatz. Mittels zweier Bohrungen (Bohrungsdublette) wird hierbei zum einen das heiße Wasser gefördert und zum anderen das abgekühlte Wasser wieder in den Aquifer reinjiziert. Das Wasser ist dabei lediglich der Wärmeüberträger der im Gestein im tiefen Untergrund gespeicherten Wärme. Die zur Verfügung stehende Wärmeenergie kann einerseits direkt an einen Heizkreislauf über Wärmetauscher weitergegeben werden, anderseits kann sie aber auch bei ausreichend hohen Temperaturen (über 100 °C) zur Stromerzeugung mit Kraft-Wärme-Kopplung genutzt werden⁴¹.

Tiefengeothermie eignet sich insbesondere für die energieeffiziente zentrale Wärmeversorgung in Ballungszentren, da die Anlagen nur wenig Fläche benötigen und leise arbeiten. Für die Nutzung zur direkten Wärmebereitstellung wird eine Grenztemperatur für tiefengeothermisches Potenzial von > 80 °C angenommen⁴². Fördertemperaturen < 80 °C können dennoch für die Wärmegewinnung geeignet sein: Je nach Netzauslegung bzw. Außentemperatur ist hier eine zusätzliche Temperaturerhöhung (z.B. zentrale Wärmepumpe) erforderlich. Auch eignet sich die Tiefengeothermie dann zum Ausbau eines kalten Wärmenetzes, bei dem dezentrale Wärmepumpen für die Temperaturbereitstellung in den einzelnen Gebäuden herangezogen werden müssen.

⁴¹ Bayerisches Landesamt für Umwelt (Hrsg.): Tiefe Geothermie (Link, zuletzt abgerufen: 18.12.2024).

⁴² TU München (Hrsg.) (2020): Bewertung Masterplan Geothermie: Im Auftrag des Bayerischen Staatsministeriums für Wirtschaft, Landesentwicklung und Energie. München.

Abbildung 37 zeigt die für diese Technologie relevante Horizonttemperatur entlang des Oberjuras (Malm) an⁴³. Dieser liegt im Landkreis Fürstenfeldbruck in einer Tiefe zwischen 600 – 1800 m Tiefe unter NN an.

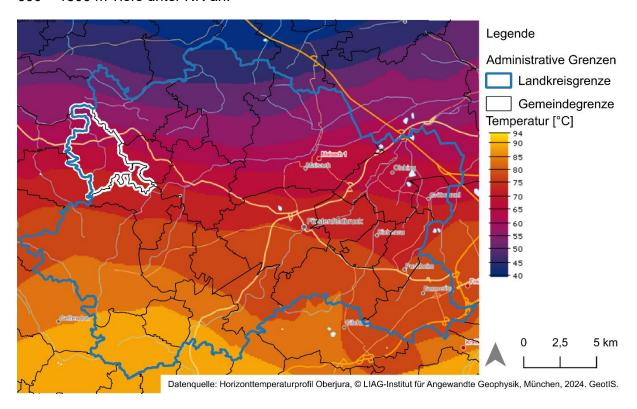


Abbildung 37: Horizonttemperatur entlang des Oberjuras (Datenquelle: GeotIS).

Im Rahmen eines Akteursgesprächs mit einem Vertreter der Geothermie Allianz Bayern (GAB) wurde diese Temperaturabschätzung validiert. Das Temperaturniveau im Bereich der Kommune ist für die direkte Wärmebereitstellung geeignet, geg. ist eine Temperaturerhöhung erforderlich.

Als zweites Kriterium ist die Konzessionsvergabe heranzuziehen. Erdwärme ist nach Bundesberggesetz (BBergG) ein sogenannter bergfreier Bodenschatz, d.h. sie gehört nicht zum Grundeigentum. Der Staat vergibt für Aufsuchung bzw. Gewinnung daher öffentlichrechtliche Konzession nach den im Bundesberggesetz verbindlich festgelegten Kriterien. Diese Konzessionen stellen eigentumsgleiche Rechte dar, die innerhalb der festgelegten Feldesgrenzen ein ausschließliches Recht zur Erkundung bzw. Gewinnung der Erdwärme vergeben. Diese sind für die Aufsuchung die "bergrechtliche Erlaubnis" und nach Fündigkeit der Bohrungen die "bergrechtliche Bewilligung" für die dauerhafte Gewinnung. Sie werden in Bayern vom Bayerischen Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) erteilt.

Seite | 53

⁴³ LIAG-Institut für Angewandte Geophysik.; Agemar, T. (2022) 3D Subsurface Temperature Model of Germany and Upper Austria. Compilation of gridded data (25 MB) and documentation.

Abbildung 38 zeigt die erteilten Erlaubnisse des Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie für tiefengeothermische Bohrungen im Landkreis Fürstenfeldbruck.

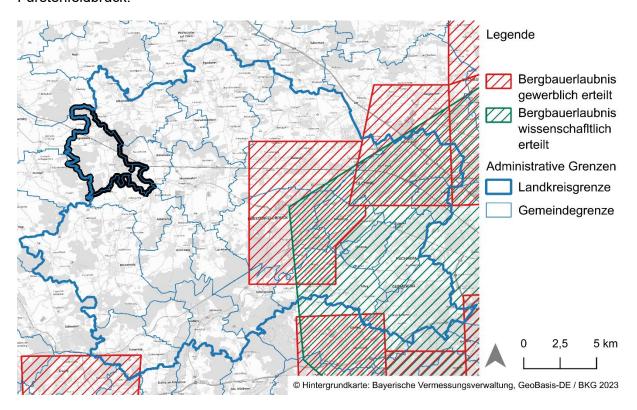


Abbildung 38: Erteilte Aufsuchungserlaubnis im Landkreis Fürstenfeldbruck (Datenquelle: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, Referat 86, FstB).

Die Tiefengeothermie stellt eine Schlüsselkomponente für die Wärmewende im Landkreis dar. Grundsätzlich besteht aufgrund des Temperaturniveaus in Althegnenberg technisches Potenzial, allerdings übersteigen die Investitionssummen und das hohe Investitionsrisiko häufig die Möglichkeiten von kleineren Kommunen. Zudem fehlt es an der nötigen Wärmeabnahmedichte.

4.4. Potenzial Wärmenetze und Wärmeverbundgebiete

Wärmenetze sind zentrale Infrastrukturen zur Verteilung von Heizwärme, die von einem oder mehreren zentralen Erzeugern - beispielsweise Heiz(kraft)werke, Industrieanlagen oder erneuerbaren Energieguellen - gespeist werden. Die Wärme wird über das Wärmenetz an die Endverbraucher wie Wohnhäuser, Gewerbebauten oder kommunale Einrichtungen geliefert. Dabei erfolgt die Wärmeübertragung in der Regel über ein geschlossenes System von isolierten Leitungen, das warmes Wasser als Trägermedium nutzt. Wärmenetze lassen sich in zwei grundlegende Typen unterscheiden: Warme Wärmenetze und kalte Wärmenetze. Warme Wärmenetze arbeiten mit hohen Vorlauftemperaturen, oft zwischen 70 und 120 °C. Sie eignen sich besonders für die direkte Beheizung von Gebäuden und die Bereitstellung von Warmwasser. Kalte Wärmenetze hingegen operieren mit deutlich niedrigeren Vorlauftemperaturen, meist zwischen 10 und 25 °C. Das benötigte Temperaturniveau auf Gebäudeseite wird dann über Wärmepumpen in jedem Objekt individuell erzeugt. Kalte Wärmenetze nutzen oft Umweltwärme oder Abwärme als Wärmequellen und können im Sommer auch zur Kühlung eingesetzt werden. Sie eignen sich vorrangig für Gebäude mit besseren energetischen Baustandards oder als Wärmequelle für Systeme mit niedrigeren Vorlauftemperaturen.

Die Eignung eines Gebietes für den Aufbau und Betrieb eines Wärmenetzes lässt sich über die jeweils vorliegenden wirtschaftlichen Rahmenbedingungen definieren. Wesentlich ist die Struktur und Höhe des Wärmeabsatzes: Eine hohe Wärmeabnahme in räumlicher Konzentration mit einer geringen Anzahl an Anschlussnehmern stellt hierbei ein wirtschaftliches Optimum der Wärmenachfragestruktur dar. Eine potenziell hohe Anschlussquote im Netzgebiet sowie das Vorhandensein von Ankerkunden mit großer, konstanter Wärmenachfrage sind wesentliche Kriterien, die dies in der Praxis stützen. Der Nachfragestruktur gegenüber stehen die Investitions- und Betriebskosten für Netzinfrastruktur und Erzeuger. Hier gilt es, einen möglichst großen Wärmeabsatz über eine möglichst geringe Netzlänge zu erzielen. Weiterhin stellen Trassenquerungen großer Straßen oder Bahnstrecken sowie die Verlegung im eng mit Sparten belegten Straßenraum wirtschaftlich ungünstige Faktoren für den Netzausbau dar. Wirtschaftliche Vorteile können beim Netzausbau etwa durch die parallele Verlegung weiterer Infrastruktur wie z.B. eines Glasfasernetzes erzielt werden oder durch die Kombination des Netzausbaus mit Maßnahmen der Straßenerneuerung.

Im Rahmen des ENPs erfolgte eine erste Identifikation potenzieller Wärmenetzgebiete auf Basis der Wärmebedarfsdichte. Die Wärmebedarfsdichte in MWh/(ha a) ist eine zentrale Kennzahl, die den potenziellen Jahreswärmeabsatz pro Fläche angibt. Sie gibt damit eine überschlägige Relation von Wärmeabsatz zu Netzinvestition an, welche für eine grundlegende erste Einschätzung der Wirtschaftlichkeit des Netzausbaus in definierten Gebieten herangezogen werden kann. Die Kategorisierung der Wärmedichte ist in Anlehnung an den Leitfaden Wärmeplanung des Bundeswirtschaftsministeriums definiert⁴⁴. Ergänzt wurde diese

⁴⁴ BMWK, BMWSB (Hrsg.) (2024): Leitfaden Wärmeplanung.

um eine zusätzliche Kategorie (415 – 750 MWh/(ha a)), um eine bessere Differenzierung der Ergebnisse zu erzielen (vgl. Tabelle 8).

Tabelle 8: Klassifizierung der Wärmedichtewerte in Eignungskategorien.

Wärmedichte

[MWh/ha*a]	Einschätzung der Eignung zur Errichtung von Wärmenetzen
0 - 70	Kein technisches Potenzial
70 - 175	Empfehlung von Wärmenetzen in Neubaugebieten
175 - 415	Empfohlen für Niedertemperaturnetze im Bestand
415 - 750	Richtwert für konventionelle Wärmenetze im Bestand unter Bedingung von Positivfaktoren
750 – 1.050	Richtwert für konventionelle Wärmenetze im Bestand
> 1.050	Sehr hohe Wärmenetzeignung

Abbildung 39 zeigt das Ergebnis für die Gemeinde Althegnenberg. Insgesamt liegen knapp 314 beheizte Gebäude mit insgesamt 11.248 MWh Wärmebedarf in Gebieten, die grundsätzlich für konventionelle Wärmenetze geeignet sind. Dies entspricht 51 % des gesamten Wärmebedarfs. Dies entspricht jedoch einem technischen Potenzial. Im Rahmen der kommunalen Wärmeplanung kann geprüft und in enger Abstimmung mit potenziellen Wärmenetzbetreibern eruiert werden, in welchen Bereichen sich tatsächlich ein Wärmenetz wirtschaftlich betreiben lässt. Dies hängt maßgeblich von lokalen Gegebenheiten wie z.B. geplante Straßensanierungsarbeiten, Spartenbelegung und Abnehmerinteresse ab.

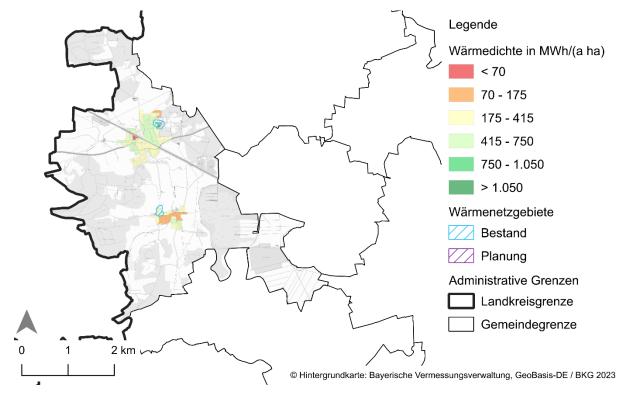
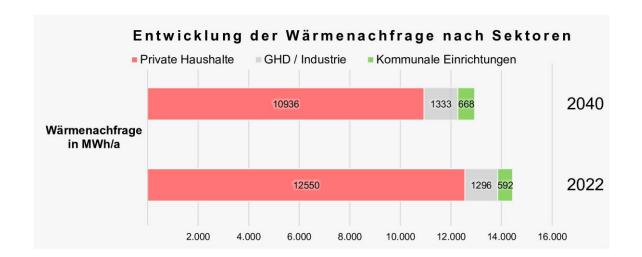


Abbildung 39: Wärmedichtekategorien im Betrachtungsgebiet.

5. Entwicklungsszenarien-Tool

Um die Kommunen des Landkreises Fürstenfeldbruck bei einer faktenbasierten Herleitung konkreter Handlungspfade und möglicher Ziele beim Ausbau der Erneuerbaren Energien zu unterstützen, hat der Landkreis das Instrument des Entwicklungsszenarien-Tools eingeführt. Mit Hilfe dieses Excel-Tools, das jeder Kommune zur Verfügung gestellt wird, können diese auf einfache Weise Ziele und Maßnahmen zur Zielerreichung als Meilensteine auf ihrem Pfad zur Klimaneutralität definieren. Damit kann sowohl der Umfang der Aufgabe des Klimaschutzes als auch mögliche Lösungswege aufgezeigt und diskutiert werden.

Das Tool umfasst verschiedene Berechnungen und Modellierungen:


- Referenzenergiesystem: Erfassung des Ist-Zustands der Energieerzeugung und -nachfrage (Strom/Wärme) basierend auf der Energiebilanz des Energienutzungsplans (erstellt mit Klimaschutzplaner)
- Prognose der Energienachfrage: Berechnung der zukünftigen Energiebedarfe anhand von Faktoren wie Bevölkerungswachstum, Wirtschaftsentwicklung und technologische Fortschritte
- Definition von Ausbauszenarien: Festlegung von Ausbauzielen für erneuerbare Stromund Wärmeerzeugung.
- Berechnung der THG-Emissionen: Darstellung der Auswirkungen der Szenarien auf CO₂-Emissionen, um Strategien zur Klimaneutralität zu bewerten.

Im Ergebnis zeigt das Tool die Szenario-Planung anhand von visuellen Darstellungen sowie Eingabemasken zur einfachen Anpassung von Parametern für eine nachhaltige Energiezukunft. Details zu den Datengrundlagen sowie der Funktions- und Bedienweise des Excel-Tools sind dem Kurzbericht "Excel-Tool für ein kommunales Entwicklungsszenario" zu entnehmen.

Nachfolgende Seiten zeigen ein beispielhaftes Entwicklungsszenario für die Gemeinde Althegnenberg. Das Ausbauszenario (siehe blau hinterlege Felder in den nachstehenden Abbildungen) kann und soll individuell in jeder Kommune eigenständig getroffen werden. Die Ausbauszenarien wurden für dieses Beispiel anhand des bestehenden Ausbaustandes, kurzoder langfristig geplanter Projekte, den Maßnahmenvorschlägen sowie auf Basis der kommunalen Fachgespräche getroffen.

Szenario erneuerbare Wärmebereitstellung

PROGNOSE

Prognostizierte Wärmenachfrage für das Jahr 2040: 12.936 MWh/a
Aktuelle Wärmenachfrage für das Jahr 2022: 14.437 MWh/a

Entwicklung der Wärmenachfrage bis 2040: -10 %

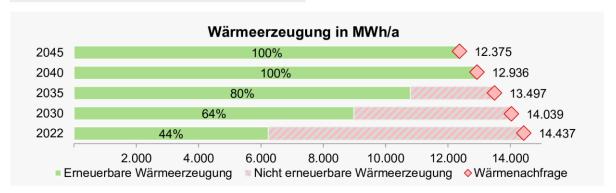
POTENZIALE

Bei der Betrachtung der Entwicklung des Wärmebedarfs, wurden Annahmen zur Sanierung des Gebäudebestands sowie die Steigerung der Energieeffizienz berücksichtigt.

Die Gemeinde Althegnenberg setzt sich folgende Sanierungsziele:

	2030	2035	2040	2045
Jährliche Sanierungsrate in % bezogen auf die Gebäudenutzfläche von 2022 Zum Vergleich: Ø Sanierungsrate Deutschland 2022: 0,8 %	1,9%	1,9%	1,9%	1,9%

ZIELSETZUNG

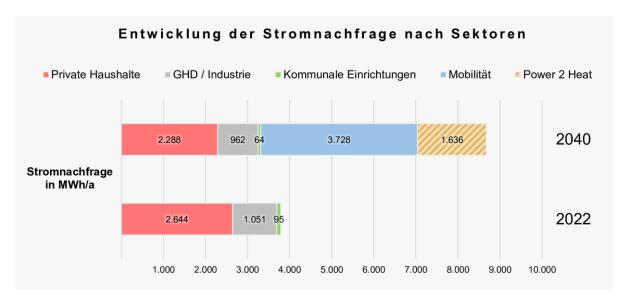

Entscheidungen, die Art und Umfang der zukünftigen Erschließung vorhandener Potenziale betreffen, obliegen der jeweiligen Kommune. Nachstehender Szenarien-Rechner ermöglicht eine Simulation mit verschiedenen Ausbauzielen und dient als Hilfestellung zur Abschätzung der benötigten Handlungsschritte auf dem Weg zu einer erneuerbaren Heizwärmeversorgung.

Die Gemeinde Althegnenberg setzt sich folgende Ziele:

		Ausbauziele %-Anteil an der gesamten Wärmeerzeugung			
Erzeuger	2022	2030	2035	<u>2040</u>	2045
Fernwärme (zentral)	6%	10%	15%	15%	15%
davon erneuerbarer Anteil	44%	100%	100%	100%	100%
Erneuerbar (dezentral)					
oberflächennahe Geothermie	5,2%	10%	15%	25%	25%
Luft-Wärmepumpe	5,2%	10%	15%	25%	25%
Solarthermie	3%	4%	5%	5%	5%
Biomasse	28%	30%	30%	30%	30%
Summe dezentrale erneuerbare Wärmebereitstellung	41%	54%	65%	85%	85%

Bei erfolgreicher Umsetzung dieser Zielsetzung ergäbe sich für die Gemeinde Althegnenberg folgende Deckung der Wärmenachfrage:

Art der Wärmeerzeugung	Prozentualer Anteil	Wärmeerzeugung in MWh/a
Erneuerbare Wärmeerzeugung	100%	12.936
Nicht erneuerbare Wärmeerzeugung	0%	0



Falls weniger Anlagen einer Art installiert werden, müssen mehr Anlagen der anderen Art installiert werden, damit das Ziel, im Landkreis Fürstenfeldbruck eine treibhausgasneutrale, von Importen unabhängige Wärmeversorgung aufzubauen, erreichbar bleibt.

Durch Definition konkreter Ziele und schrittweise Umsetzung der Potenziale lassen sich die Folgen des Klimawandels mildern und die regionale Wertschöpfung stärken.

Szenario erneuerbare Strombereitstellung

PROGNOSE

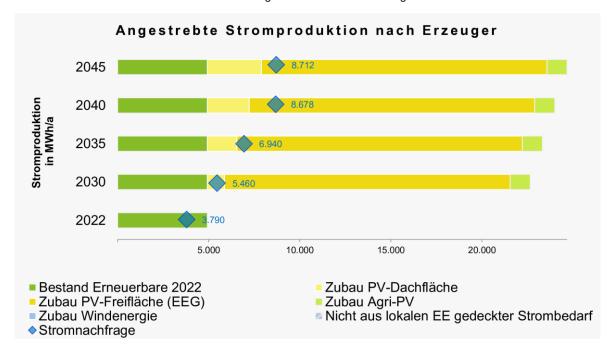
Prognostizierte Gesamtstromnachfrage in 2040:	8.678 MWh/a
Zunahme der Stromnachfrage von 2022 bis 2040:	129 %
Anteil der Mobilität an der Stromnachfrage in 2040:	43 %
Anteil der Wärme an der Stromnachfrage in 2040:	19 %

POTENZIALE

Um den durch E-Mobilität, Wärmepumpen und andere Entwicklungen steigenden Strombedarf zu decken und die Ziele aus der Klimaschutzerklärung zu erreichen, sollte dieser Strom künftig bilanziell erneuerbar erzeugt werden.

Möglichkeiten zur erneuerbaren Deckung der Stromnachfrage sind vornehmlich Photovoltaik, Windkraft, Wasserkraft sowie Biomasse, wobei die Potenziale für Biomasse und Wasserkraft bereits heute als ausgeschöpft angesehen werden.

Weitere wichtige Schritte umfassen Maßnahmen zur Energieeinsparung: beispielsweise die Sanierung des Gebäudebestands und die Steigerung der Energieeffizienz in allen Bereichen.


ZIELSETZUNG

Entscheidungen, die Art und Umfang der zukünftigen Nutzung vorhandener Potenziale betreffen, obliegen der jeweiligen Kommune. Nachstehender Szenarien-Generator ermöglicht ein Experimentieren mit verschiedenen Ausbauzielen und dient als Hilfestellung zur Abschätzung der benötigten Handlungsschritte auf dem Weg zu einer erneuerbaren Stromversorgung.

Die Gemeinde Althegnenberg setzt sich folgende Ziele im Ausbau regenerativer Stromerzeugung:

		Zubauziele				
Erzeuger	2022	2030	2035	<u>2040</u>	2045	Einheit
Windkraft	0	0	0	0	0	Anlagen
PV Dachfläche	5952 kwp	1.050	1.800	2.550	3.300	kWp ~ 8 kWp pro EFH
PV Freifläche	Dach-PV (+FFPV)	16	16	16	16	ha
PV Freifläche (Agri-PV)	0	2	2	2	2	ha

Bei erfolgreicher Umsetzung dieser Zielsetzung ergäbe sich für die Gemeinde Althegnenberg folgende Deckung der Stromnachfrage durch erneuerbare Energien:

Falls weniger Anlagen einer Art installiert werden, müssen mehr Anlagen der anderen Art installiert werden, damit das Ziel, im Landkreis Fürstenfeldbruck eine treibhausgasneutrale, von Importen unabhängige Stromversorgung aufzubauen, erreicht werden kann.

Durch Definition konkreter Ziele und schrittweise Umsetzung der Potenziale lassen sich die Folgen des Klimawandels mildern und die regionale Wertschöpfung stärken.

6. Maßnahmenkatalog

Das Kernziel des digitalen Energienutzungsplans ist die Erstellung eines umsetzungsorientierten und praxisbezogenen Maßnahmenkatalogs, der konkrete Handlungsempfehlungen für die Kommune aufzeigt. Der Maßnahmenkatalog wurde in enger Abstimmung im Rahmen der Fachgespräche ausgearbeitet.

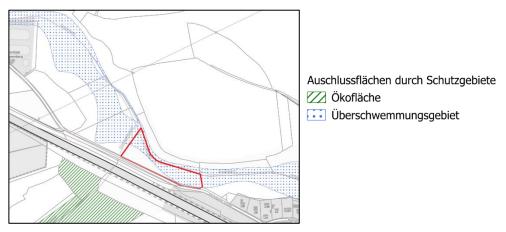
Einzelne Projekte aus dem Maßnahmenkatalog wurden im Rahmen des digitalen Energienutzungsplans als Detailprojekte auf technische und wirtschaftliche Umsetzbarkeit hin geprüft. Im folgenden Abschnitt werden die einzelnen Maßnahmen in Steckbriefen beschrieben. Wo dies sinnvoll erschien, wurden diese Steckbriefe um Detailanalysen ergänzt. Es besteht die Möglichkeit, die Umsetzung der im Maßnahmenkatalog aufgeführten Projekte im Rahmen von Anschlussförderungen zu fördern, dies umfasst z.B. Potenzialstudien oder Umsetzungsbegleitungen. Ein Energienutzungsplan dient allgemeinhin der internen Entscheidungsvorbereitung und entfaltet keine Rechtswirkung nach außen. Insoweit bedürfen die erarbeiteten Maßnahmenempfehlungen eines Beschlusses durch den Gemeinderat.

Die Beschreibung der einzelnen Maßnahmen erfolgt dabei nach folgendem Schema:

Titel	
Ziel(e)	
Zielgruppe	 Kommune, Landkreis Unternehmen Privater Sektor (BürgerInnen, GebäudeeigentümerInnen)
Einfluss der Kommune auf die Umsetzung	 Die Kommune hat direkten Einfluss. Die Kommune hat indirekten Einfluss. Die Entscheidung über die Umsetzung des Projektes wird nicht (primär) von der Kommune getroffen. Die Kommune hat geringen bis keinen Einfluss auf die Entscheidung über die Umsetzung, kann jedoch durch Informationsbereitstellung die Maßnahme anstoßen.
Umsetzungszeitraum	 Kurzfristig: bis zu 2 Jahren Mittelfristig: 2-5 Jahre Langfristig: > 5 Jahre
Fördermöglichkeiten	 Förderungen des Freistaat Bayern Förderung des Bundes Hinweis: die genannten Fördermöglichkeiten sind eine Momentaufnahme zum Zeitpunkt der Erstellung des Energienutzungsplans. Die Darstellung erhebt keinen Anspruch auf Vollständigkeit bzw. Förderfähigkeit. Sie ersetzt daher keine Beurteilung durch den jeweiligen Fördermittelgeber.
CO₂ Einsparung	 Maßnahmenspezifische Angabe, z.B. Spezifische Emissionen einer Anlage Größenordnung der gesamten Emissionsreduktion Spezifische Emissionsreduktion je eingesparter Einheit
Kostenabschätzung	 Maßnahmenspezifische Angabe, z.B. Spezifische Kosten der jeweiligen Anlage Größenordnung der Gesamtinvestition (<10.000 EUR; 10.000 – 50.000 EUR; 50.000 – 100.000 EUR; > 100.000 EUR)

1. Check-Dein-Haus Kampagne

Kurzbeschreibung	Über 50 % des bilanzierten Endenergieverbrauchs entfällt im Landkreis Fürstenfeldbruck auf den Wärmesektor. Häufig wird der Aufwand einer energetischen Sanierung der Privaten Haushalte aufgrund der Kosten und des baulichen Aufwands gescheut. In vielen Fällen fehlen den GebäudebesitzerInnen jedoch die nötigen Kenntnisse und Informationen der technisch-wirtschaftlichen Vorteile einer Gebäudesanierung. Dem kann durch persönliche Ansprache entgegengewirkt werden. Zu diesem Zweck bietet die Verbraucherzentrale Vor-Ort-Energieberatungen an, deren Kosten zum Großteil durch das Bundesministerium für Wirtschaft und Klimaschutz übernommen werden. Die Kommune kann durch eine Check-Dein-Haus Kampagne in Kooperation mit der Energieagentur Klima³ ihre BürgerInnen direkt ansprechen und so die Beratungsangebote bewerben.
Ziel(e)	Steigerung der Sanierungsrate und Zubau von regenerativen Energieerzeugungsanlagen (Solarthermie, Photovoltaik, Wärmepumpen)
Zielgruppe	Privater Sektor: GebäudeeigentümerInnen
Einfluss der Kommune auf die Umsetzung	Indirekt
Zeitraum für die Umsetzung	Kurzfristig (0 – 3 Jahre)
Fördermöglichkeiten	Energieberatung der Verbraucherzentrale, gefördert durch das Bundesministerium für Wirtschaft und Klimaschutz
Nächste Schritte	 Abstimmung des Konzeptes (Kommunikation, Pressearbeit, benötigte Beratungs-Kapazität…) mit Klima³ Start mit Vortrag vor Ort für alle Interessierten BürgerInnen und Anmeldemöglichkeit für Gebäudecheck Durchführung der Energieberatungen
Anzunehmende CO₂ Einsparung	Sehr hoch: Ø Energieeinsparung im Einfamilienhausbestand im Landkreis Fürstenfeldbruck im Sanierungsszenario "Mittel" entspricht 48 % vom Ist-Zustand. Bei der Sanierung von 50 Einfamilienhäusern ergibt das eine jährliche Einsparung von 630 MWh/a. Durchschnittliche THG-Emission Wärmesektor im Landkreis: 242 g / kWh; Einsparpotenzial: 152 t CO _{2äq} pro Jahr
Kostenabschätzung	Niedrige Kosten (~ 2.000 €)


2. Beratungskampagne Dach-Photovoltaik

Kurzbeschreibung	Ungenutzte Dachflächen mit Photovoltaik zu belegen ist sowohl aus wirtschaftlicher als auch ökologischer Sicht sinnvoll. Dach-Photovoltaik kann durch die Eigennutzung Stromnetze entlasten, erfordert keine zusätzliche Flächenversiegelung und ist zumeist nach einigen Jahren ein finanzieller Zugewinn für HausbesitzerInnen. Häufig benötigt es jedoch noch ein niederschwelliges Informationsund Beratungsangebot, um private GebäudeeigentümerInnen zu aktivieren. Daher soll eine (zeitlich begrenzte) Beratungs-/Aktivierungskampagne z.B. in Kooperation mit Energieagentur Klima³ durchgeführt werden.			
Ziel(e)	Erhöhung der Zubaurate von Photovoltaik-Dachanlagen auf privaten Gebäuden			
Zielgruppe	Privater Sektor: GebäudeeigentümerInnen			
Einfluss der Kommune auf die Umsetzung	Indirekt			
Umsetzungszeitraum	kurzfristig (0 - 3 Jahre)			
Fördermöglichkeiten	Inanspruchnahme des Angebotes der Energieagentur Klima³			
Nächste Schritte	 Abstimmung eines Konzepts (Kommunikation, benötigte Beratungs-Kapazität) mit der Energieagentur Klima³ Kommunikation durch Anzeigenblatt, Website 			
CO₂ Einsparung	Sehr hoch: Einsparungspotenzial am Beispiel des Zubaus im Jahr 2023 in Althegnenberg: 137 t CO _{2äq} pro Jahr Emissionsfaktor des deutschen Strommix 2022: 498 g CO _{2äq} /kWh			
Kostenabschätzung	Niedrige Kosten (0 - 10.000 €)			

3. Wirtschaftlich-Ökologische Optimierung Pumpwerk

Kurzbeschreibung	Die Planung der zukünftigen Abwasserentsorgungsplanung der Gemeinde Althegnenberg umfasst das Klärwerk abzuschalten und das Abwasser zukünftig abzuleiten. Durch die dafür benötigte Pumpleistung ist mit einem Anstieg des Stromverbrauchs und damit einhergehenden steigenden Betriebskosten zu rechnen. Daher soll rechtzeitig eine wirtschaftlich-ökologische Optimierung der geplanten Pumpenanlage berücksichtigt werden.
Ziel(e)	 Reduktion des Energieverbrauchs Maximierung der Energieeffizienz Minimierung der Betriebskosten Klimaschutz durch Effizienzsteigerung und Nutzung erneuerbarer Energien
Zielgruppe	Kommune
Einfluss der Kommune auf die Umsetzung	Direkt
Zeitraum für die Umsetzung	Kurz- bis Mittelfristig (1 – 5 Jahre)
Fördermöglichkeiten	 Energiekonzepte StMWi: 50 %, max. 50.000 € Machbarkeitsstudie Kommunalrichtlinie des BMWK: 50 - 70 % Maßnahmenumsetzung Kommunalrichtlinie des BMWK: 30 %
Nächste Schritte	Beauftragung eines erfahrenen Planungsbüros mit Kenntnissen im Bereich energetischer Optimierung und Photovoltaik-Nutzung Erfassung Ist-Zustand (benötigte Pumpleistung, Abwassermenge) Effizienzstandards bei der Wahl der Pumpsysteme berücksichtigen Nutzung regenerativ erzeugten Stroms und Maximierung des Eigenbedarfs: Dachfläche Pumpstation / optimale Dimensionierung Freiflächen-Photovoltaik Prüfung und Dimensionierung eines Batteriespeichers
Anzunehmende CO₂ Einsparung	100 kWp Photovoltaik erzeugen ca. 100.000 kWh Strom pro Jahr: 50 t CO _{2äq} Einsparung pro Jahr Annahme: Emission des Bundesstrommix 2022: 498 g CO _{2äq} /kWh
Kostenabschätzung der Maßnahmenausführung	Konzepterstellung: Mittel 10.000 - 50.000 € Investition für 100 kWp: Sehr hoch ~ 100.000 – 150.000 € Einsparpotenzial Stromkosten: 20 – 40 %

Der Nutzung von Photovoltaik für die benötigte Pumpleistung ist besonders sinnvoll, da es sich um einen hohen und kontinuierlichen Energiebedarf und damit wesentliche Betriebskosten im kommunalen Haushalt handelt. Die Auslegungsplanung der Pumpen und einer Photovoltaikanlage sollte zudem die Einbindung eines Stromspeichers beinhalten. In Kombination mit einer intelligenten Laststeuerung kann die Eigenverbrauchsquote maximiert und eine nachhaltige, unabhängige Energieversorgung gesichert werden.

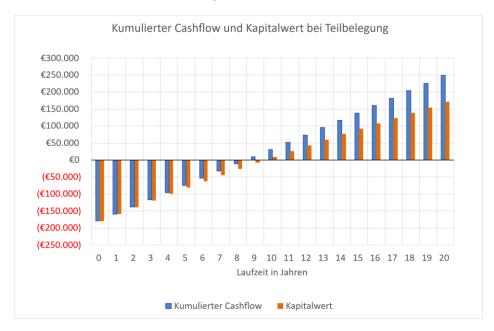
Das für die Pumpstation beplante Flurstück 125 umfasst eine Fläche von 6.000 m². Davon sind ~ 4000 m² durch die Ausweisung als Überschwemmungsgebiet für den Bau von Freiflächen-Photovoltaik aktuell ausgeschlossen. 2025 soll jedoch eine Aktualisierung der Hochwassergebietsausweisung stattfinden. Nach aktuellem Stand verbleiben ~ 2.000 m² für den Bau einer kleinen Anlage. Zusätzlich muss die für die Rückhaltebecken benötigte Fläche (~ 2.000 m²) beachtet werden, welche unter Umständen ebenfalls in der nicht durch Hochwasserschutz belegten Fläche liegt. Eine weitere Option kann auch die Nutzung der Dachflächen der Pumphäuser oder der Bau einer Freiflächen-Photovoltaikanlage auf einem der umliegenden, nicht von Ausschlusskriterien betroffenen Flurstücke sein.

Laut Rückmeldung des planenden Ingenieurbüros Dippold+Gerold Beratende Ingenieure GmbH wird mit einer Gesamtleistung von > 80 kW gerechnet. Eine Prognose des Jahresstromverbrauchs der geplanten Anlagen kann zum aktuellen Stand noch nicht getroffen werden.

Praxisbeispiel einer Freiflächen-Photovoltaik für das Klärwerk in der Gemeinde Schemmerhof (Link):

Stromverbrauch Klärwerk: ~ 400.000 kWh

Kenndaten Freiflächen-Photovoltaik:


Leistung: 135 kWp

geschätzter Flächenbedarf ~ 1.350 m²

Stromerzeugung: 152.000 kWh pro Jahr

Eigenstromnutzung: 67 %

Nachfolgende Graphik zeigt die Ergebnisse einer beispielhaften Wirtschaftlichkeitsabschätzung am Beispiel der Anlage in Schemmerhof und verdeutlicht den finanziellen Mehrwert der Anlage:

Im Ergebnis ergibt sich eine Amortisationszeit von etwa 9-10 Jahren unter den angenommenen Bedingungen:

Investitionskosten: 200.000 € (~1.500 € pro kWp)

Jährliche Betriebskosten: 2 % der Investitionssumme

Jährliche Moduldegradation: 0,25 % Inflation: 2 %

Stromverbrauch: 400.000 kWh p.a. Strompreis (Netzbezug): 0,19 €/kWh

Strompreissteigerung: 1 %

Anteil der Eigenstromnutzung 67 %

Einspeisevergütung: 0,04 €/kWh

Dies stellt lediglich eine Beispielrechnung auf Basis der verfügbaren Informationen zur Bestandsanlage in Schemmerhof dar. Für eine Optimierung der Auslegungsberechnung gilt es, eine genaue Stromverbrauchsprognose des Pumpwerks zu kennen, die Kombination eines Batteriespeichers zu berücksichtigen und geeignete Fachbüros hinzuzuziehen.

4. Energiekonzept für Schule, Kinderhaus, Sportplatzgebäude: Heizungstausch und Ausbau Dach-Photovoltaik

Kurzbeschreibung

Die Grundschule, das Sportplatzgebäude sowie das Kinderhaus werden aktuell über eine Hackschnitzelheizung in Kombination mit einer Ölheizung mit Wärme versorgt. Kurzfristig steht hier eine Heizungssanierung an. Diese soll frühzeitig geplant und geeignete Alternativen gefunden werden. Ein Energiekonzept für kommunale Liegenschaften dient der systematischen Analyse und Optimierung des Energieverbrauchs der Gebäude. Ergebnis der Untersuchung sind konkrete Realisierungsvorschläge mit Angaben zur energietechnischen Dimensionierung, Investitionskosten und Wirtschaftlichkeit. Dies dient als Entscheidungsgrundlage für darauffolgende Maßnahmen und Umsetzungsentscheidungen. Eine Kombination mit dem Ausbau der Dach-Photovoltaik Anlage, bzw. Einbindung der bestehenden Anlage wird empfohlen, sobald diese aus der aktuellen EEG-Vergütung rausfällt.

Ziel(e)

- Erhöhung der Energieeffizienz
- Reduzierung der Betriebskosten
- Senkung des Energieverbrauchs und des CO₂-Ausstoßes
- Nachhaltige Gebäudebewirtschaftung

Zielgruppe

Kommune

Einfluss der Kommune auf die Umsetzung

Direkt

Umsetzungszeitraum

Erstellung des Energiekonzepts: 6 – 12 Monate.

Umsetzung kurzfristiger Maßnahmen

(z. B. Heizungsoptimierung, LED-Beleuchtung): 1 – 2 Jahre

Langfristige Sanierungen und Umstellung auf erneuerbare Energien:

5 - 10 Jahre

Fördermöglichkeiten

- Förderung durch das StMWi, Bayern Innovativ: 50 %, Maximal 50.000 €
- Umsetzung: KFW (422), Bundesförderung für effiziente Gebäude (BEG) für eine Wärmeversorgung durch Gebäudenetze

Nächste Schritte

- Bestandsaufnahme und Bewertung der Heizanlagen hinsichtlich Alter, Effizienz und Zustand
- Technisch-wirtschaftlicher Variantenvergleich
- Weiterbetrieb Heizzentrale für alle Liegenschaften: Hackschnitzelheizung in Kombination mit einer strombasierten Wärmeversorgung (z.B. Luft-Wasser-Wärmepumpe).

- Dezentrale, strombasierte Versorgungsvariante für jedes Gebäude unter Berücksichtigung ausreichend dimensionierter Pufferspeicher.
- Zeit- und Budgetplanung für Austausch
- Umsetzung: Austausch Heizsysteme

CO₂ Einsparung

Mittel:

Substitution des Ölverbrauchs (70.000 kWh/a) durch Wärmepumpe:

= 16 t CO_{2äq} pro Jahr

Stromerzeugung aus 34 kWp Dach-Photovoltaik: 13 t CO_{2äq} pro Jahr Emissionsfaktor des deutschen Strommix 2022: 498 g CO_{2äq} /kWh

Kostenabschätzung

Erstellung des Energiekonzepts: Mittel bis hoch ~ 30.000–100.000 €

(je nach Umfang).


Kosten für den Heizungstausch: Sehr hoch~ 100.000 – 300.000 € Kosten für 34 kWp Dach-Photovoltaik: Mittel ~ 35.000 - 45.000 €

Langfristige Einsparungen: 20 – 50 % der jährlichen Energiekosten.

Ergänzende Informationen zur Maßnahme

Beispielrechnung CO₂-Preisentwicklung bei Substitution des Ölverbrauchs durch eine Wärmepumpe: Der Kostenvergleich zwischen einer fossilen und einer regenerativen Wärmeerzeugung gewinnt zunehmend an Bedeutung, da Energiepreise und die Preise des CO₂-Emissionshandels stetig steigen. Beide Heizsysteme unterscheiden sich deutlich in den Anschaffungskosten, den Energiekosten und den Betriebskosten sowie ihrer Abhängigkeit von Energiepreisentwicklungen. Während fossile Heizungen aktuell wesentlich geringere Investitionskosten aufweisen, bieten Wärmepumpen langfristig einen Vorteil durch niedrigere Betriebskosten. Die Entwicklung der CO₂-Bepreisung spielt dabei eine zentrale Rolle, da sie die Brennstoffkosten fossiler Heizsysteme langfristig nachteilig beeinflusst. Die Preispfade des CO₂-Emissionshandels liegen 2025 mit dem nationalen Brennstoffemissionshandel (nEHS) bei 45 €/t CO₂. Da ab 2027 der freie Zertifikatshandel des europäischen Emissionshandels den nEHS ersetzt, bestimmt der Markt die Höhe des CO₂-Preises. Die Preisprognosen für 2045 weisen eine breite Streuung bis zu 670 €/t auf⁴⁵. Eine Beispielrechnung, welche rein die jährlichen Energiekosten (Einkauf Heizöl / Strom und Emissionskosten) über die kommenden betrachtet, wurde auf Grundlage des aktuellen Ölverbrauchs Grundschule/Sportplatzgebäude/Kinderhaus erstellt. Aufgrund der schwierigen Preisprognose werden zwei Szenarien dargestellt:

- 1. Szenario: Energiekosten, ohne CO₂-Preis (durchgezogene Linien)
- Szenario: Energiekosten unter Annahme einer maximalen CO₂-Preissteigerung auf 670€/t in 2045 (gestrichelte Linie)

⁴⁵ Bayerischer Unternehmensverband Metall und Elektro e. V., Verband der Bayerischen Metall- und Elektro-Industrie e. V., Vereinigung der Bayerischen Wirtschaft e. V. (Hrsg.) (2024). Online verfügbar: <u>Link</u> (zuletzt aufgerufen 30.01.2025).

Seite | 71

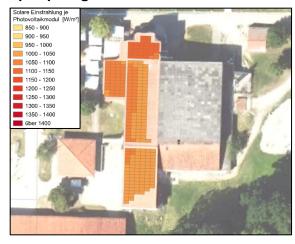
Ohne CO₂-Preis liegen die jährlichen Energiekosten der Wärmepumpe in dieser Beispielrechnung jährlich 1.400 € unter den Kosten der Ölheizung. Mit CO₂-Bepreisung wird die Differenz deutlich größer.

Folgende Annahmen liegen der Beispielrechnung zugrunde:

Heizölverbrauch:	70.000	kWh p.a.
Heizölpreis	0,08	€/kWh (~80 €/100 I)
Emissionen Heizöl:	310	g/kWh
Jahresarbeitszahl der		
Wärmepumpe:	3,5	
Stromverbrauch Wärmepumpe:	22.200	kWh p.a.
		€/kWh (Wärmepumpentarif,
Strompreis:	0,19	Endkundenpreis)
Emissionen Strom:	260	g/kWh (2025)
	15	g/kWh (2045)

Mögliche Preisschwankungen im Energiepreisschwankungen wurden aufgrund der geringen Prognosesicherheit für diese Beispielrechnung vernachlässigt. Die Energiekosten der Wärmepumpe können durch eine Kombination mich Dach-Photovoltaik weiter gesenkt werden.

Potenzialabschätzung Dach-Photovoltaik:


Nachfolgende wird eine überschlägige Wirtschaftlichkeitsberechnung für potenzielle Dach-Photovoltaik Anlagen auf den öffentlichen Gebäuden dargestellt. Die Berechnung erfolgt vorbehaltlich statischer Prüfungen.

Die erste Graphik (Luftbild) zeigt jeweils das maximale Potenzial des Daches bei einer Vollbelegung. Verschattungen und aufgrund zu geringer solarer Einstrahlung ungeeignete Dächer sind bereits ausgenommen.

Für die Teilbelegung wird eine überschlägige Wirtschaftlichkeit berechnet. Dafür wird ein für Schulen und öffentliche Gebäude typisches Lastprofil zugrunde gelegt. Der aktuelle Stromverbrauch geht in die Rechnung mit ein. Für die Prognose der Eigenverbrauchsquote können nur grobe Näherungswerte angenommen werden, da keine zeitliche Auflösung des Verbrauchs vorliegt. Sie richtet sich sowohl nach der angenommen installierten Leistung der Dach-Photovoltaik, als auch nach dem aktuellen Stromverbrauch.

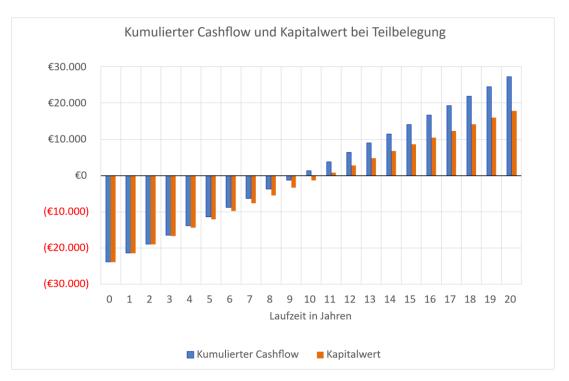
Für eine Optimierung der Auslegungsberechnung gilt es, geeignete Fachbüros hinzuzuziehen. Bei einer Kombination der Dachflächen-Photovoltaik mit Speicher, Wärmepumpe oder E-Ladesäulen ist aufgrund des steigenden Strombedarfs ein weiterer Zubau an Dachflächen-Photovoltaik empfehlenswert.

Sportplatzgebäude

Potenzialabschätzung Gesamt:

Anzahl Module: 311 Stück à 420 Wp

Gesamtleistung: 131 kWp


Ausrichtung: West

 Gesamtjahresstromertrag: 99.000 kWh/a

Investitionskosten: ~145.000 €
 CO₂ – Einsparung: 49,3 t pro Jahr

Stromverbrauch: ~ 22.500 kWh/a

Nachfolgende Graphik zeigt die Ergebnisse einer überschlägigen Wirtschaftlichkeitsberechnung bei einem Zubau einer 24 kWp Anlage auf dem Dach des Sportplatzgebäudes bei einer Eigenverbrauchsquote von 60 %. Es kann mit einer Amortisationszeit von etwa 10 - 11 Jahren gerechnet werden. Danach erwirtschaftet die Anlage Gewinne. Unter Berücksichtigung des Eigenstromverbrauchs von insgesamt 22.500 kWh erscheint daher aus wirtschaftlicher Sicht ein Zubau von ca. 24 kWp als sinnvoll. Von einer Vollbelegung wird aus wirtschaftlichen Gesichtspunkten abgeraten. Je nach Nutzungszeiten des Gebäudes ist ein Stromspeicher erforderlich, um eine entsprechende Eigenverbrauchsquote zu erreichen.

Folgende Annahmen liegen der Wirtschaftlichkeitsabschätzung zugrunde:

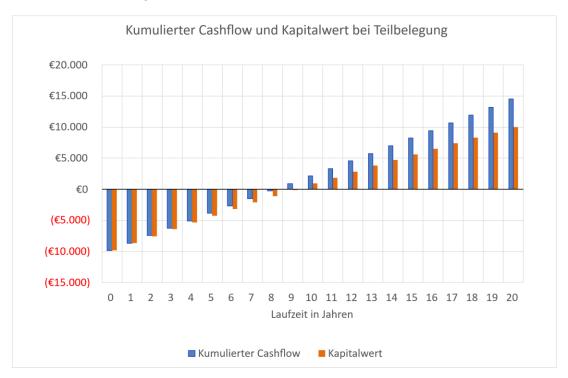
Investitionskosten: 26.400 €

Jährliche Betriebskosten: 2 % der Investitionssumme

Jährliche Moduldegradation: 0,25 % Inflation: 2 %

Stromverbrauch:22.500kWh p.a.Strompreis (Netzbezug):0,19€/kWhStrompreissteigerung:1%Anteil der Eigenstromnutzung60%EEG-Einspeisevergütung:0,0695€/kWh

Kinderhaus



Stromverbrauch: ~ 10.000 kWh/a

- Potenzialabschätzung Gesamt:
- Anzahl Module: 215 Stück à 420 Wp
- Gesamtleistung: 90 kWp
- Ausrichtung: Ost/West
- Gesamtjahresstromertrag:
 - 74.300 kWh/a
- Investitionskosten: ~100.000 €
- CO₂ Einsparung: 37 t pro Jahr

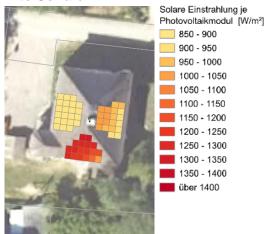
Nachfolgende Graphik zeigt die Ergebnisse einer überschlägigen Wirtschaftlichkeitsberechnung bei einem Zubau einer 10 kWp Anlage auf dem Dach des Kinderhauses bei einer

Eigenverbrauchsquote von 60 %. Es kann mit einer Amortisationszeit von etwa 9 - 10 Jahren gerechnet werden. Danach erwirtschaftet die Anlage Gewinne. Unter Berücksichtigung des Eigenstromverbrauchs von insgesamt 10.000 kWh erscheint daher aus wirtschaftlicher Sicht ein Zubau von ca. 10 kWp als sinnvoll. Von einer Vollbelegung wird aus wirtschaftlichen Gesichtspunkten abgeraten.

Folgende Annahmen liegen der Wirtschaftlichkeitsabschätzung zugrunde:

Investitionskosten: 11.000 €

Jährliche Betriebskosten: 2 % der Investitionssumme


Jährliche Moduldegradation: 0,25 % Inflation: 2 %

Stromverbrauch:10.000kWh p.a.Strompreis (Netzbezug):0,19€/kWhStrompreissteigerung:1%Anteil der Eigenstromnutzung60%EEG-Einspeisevergütung:0,0803€/kWh

5. Ausbau einer Photovoltaik-Anlage auf Alter Schule

Kurzbeschreibung	Die "Alte Schule" soll zukünftig als Bürgerhaus dienen. Daher ist mit einem Anstieg des Stromverbrauchs zu rechnen. Die Dachfläche des Gebäudes eignet sich für den Ausbau von Dach-Photovoltaik zur regenerativen Stromerzeugung. Über die Eigenstromnutzung und Überschusseinspeisung kann die Kommune sowohl finanziell als auch vom Klimaschutz profitieren. Die Integration eines Batteriespeichers wird empfohlen, um den Eigenverbrauchsanteil zu maximieren.
Ziel(e)	 Senkung der Stromverbrauchskosten Steigerung der Unabhängigkeit von Strompreisschwankungen Beitrag zur Energiewende Vorbildfunktion
Zielgruppe	Verwaltung / Liegenschaften
Einfluss der Kommune auf die Umsetzung	Direkt
Zeitraum für die Umsetzung	Kurzfristig (0 – 3 Jahre)
Fördermöglichkeiten	Dach-Photovoltaik sind von der Mehrwertsteuer befreit, Überschussstrom wird gemäß EEG vergütet
Nächste Schritte	 Abschätzung zukünftiger Strombedarfs Anfrage eines SolarteurIn mit Dimensionierung und Bau der Anlage Prüfung zur Integration eines Stromspeichers Errichtung und Betrieb der Anlagen
Anzunehmende CO₂ Einsparung	Mittel: CO ₂ – Einsparung bei 25 kWp Anlage: 9,3 t CO _{2äq} pro Jahr Emissionsfaktor des deutschen Strommix 2022: 498 g CO _{2äq} /kWh
Kostenabschätzung der Maßnahmenausführung	Mittel bei 25 kWp Anlage: ~ 27.500 € Annahme: 1.100 €/kWp

Alte Schule

Keine Stromverbrauchsdaten vorhanden.

Potenzialabschätzung Gesamt:

Anzahl Module: 60 Stück à 420 Wp

Gesamtleistung: 25 kWp
Ausrichtung: Ost/Süd/West
Gesamtjahresstromertrag: 18.700 kWh/a

6. Auf- und Ausbau eines Wärmenetzes

Kurzbeschreibung	Ein Wärmenetz ermöglicht die zentrale Erzeugung und Verteilung von Wärme an mehrere VerbraucherInnen, wodurch der Energieverbrauch und die CO ₂ -Emissionen erheblich reduziert werden können. Durch die gemeinsame Nutzung von Wärmequellen wird eine höhere Effizienz erreicht, was langfristig zu	
	Kosteneinsparungen und einer nachhaltigen Energieversorgung beiträgt. AnschlussnehmerInnen können kurzfristig von geringeren Investitions- und langfristig von stabilen Wärmepreisen profitieren.	
Ziel(e)	 Senkung der Heiz- und Investitionskosten für anschließende GebäudeeigentümerInnen Reduktion fossiler Brennstoffe durch Integration erneuerbarer Energien, Beitrag zur CO₂ -Reduktion Lokale Wertschöpfung bei lokalem Betreiber 	
Zielgruppe	Kommune, potenzielle Wärmenetzbetreiber	
Zeitraum für die Umsetzung	Machbarkeitsstudie/Planung: 1 – 2 Jahre Bauphase und Installation des Wärmenetzes: 2 – 5 Jahre	
Fördermöglichkeiten	BEW – Modul 1 (Machbarkeitsstudie): 50 % Förderung BEW – Modul 2 (Neubau Netz): 40 % Investitionszuschuss (Wirtschaftlichkeitslücke)	
Akteure	Kommune, GebäudeeigentümerInnen, potenzielle Wärmenetzbetreiber	
Nächste Schritte	 Sondierung von Anbietern/ Angebots-Abfrage Machbarkeitsstudie Erstellung einer Projektskizze zur Antragstellung Machbarkeitsstudie Stellung Förderantrag BEW (Modul 1) Erstellung einer Machbarkeitsstudie und Wirtschaftlichkeitsberechnung. Beschluss zum weiteren Vorgehen, inkl. Klärung Rollenverteilung/ Rechtsform Beantragung von investiven Fördermitteln (BEW Modul 2) und Klärung Finanzierungskonzept Planung des Wärmenetzes/ Abstimmung mit Beteiligten. Bau und Inbetriebnahme der Wärmeleitungen und - anlagen. Anbindung von VerbraucherInnen und schrittweise Netzerweiterung. 	

Digitaler Energienutzungsplan für die Gemeinde Althegnenberg		
	Monitoring und Optimierung des Netzbetriebs.	
Einfluss der Kommune auf die Umsetzung	Sehr hoch: Einsparpotenzial von 50 durchschnittlichen Einfamilienhäusern (50 % Erdgasheizung/50 % Ölheizung): 275 t CO ₂ -Einsparung pro Jahr	
Anzunehmende CO₂ Einsparung	Machbarkeitsstudie / Planung: Mittel bis hoch 20.000 – 100.000 € Baukosten: Sehr hoch, je nach Größe mehrere Millionen €	

Ergänzende Informationen zur Maßnahme

Voranalyse – Potenzial für ein Wärmenetz in der Graf-Dux-Straße

Bestandsgebiet & Neubaugebiet

Der dargestellte Leitungsverlauf dient lediglich als schematische Skizze und zur Ermittlung einer ungefähren Leitungslänge. Eigentumsverhältnisse oder örtliche Gegebenheiten können zu abweichenden Leitungsverläufen führen.

Potenzialabschätzung Bestand 60 % Anschlussquote

Angeschlossene Gebäude: 29/39 Wärmebedarf: 900.000 kWh

Netzlänge: 530 m

Wärmebelegungsdichte: 1.600 kWh/m

Neubaugebiet 100 % Anschlussquote:

Angeschlossene Gebäude: 48 Wärmebedarf: 460.000 kWh

Netzlänge: 530 m

Wärmebelegungsdichte: 900 kWh/m

Auswertung Kaminkehrerdaten im Bestand Graf-Dux-Straße:

Heizungsalter (Ø 24 Jahre) lässt auf baldige Notwendigkeit für Heizungstausch schließen. Großteil der Zentralheizungen werden mit Heizöl betrieben. Scheitholzöfen, Kachelöfen oder ähnliche werden als Einzelraumfeuerstätten in den Gebäuden zusätzlich genutzt. Dies kann sich begünstigend auf die Anschlussquote eines potenziellen Wärmenetzes auswirken.

Abschätzung Wärmebedarf im

Neubaugebiet (auf Basis Bebauungsplan -Entwurf, Fassung vom 11.02.2021): 48 Gebäude 11.900 m² Wohnfläche

Geschätzter Gesamtwärmebedarf:

464 MWh/a*

Potenzialabschätzung Kaltes Wärmenetz/ Oberflächennahe Geothermie:

Im Energienutzungsplan wurde der prognostizierte Wärmebedarf von 464 MWh/a den ermittelten Potenzialen zur oberflächennahen Geothermie gegenübergestellt. Sowohl Flächenkollektoren, Erdwärme-sonden als auch Grundwasserwärme weisen in diesem Gebiet kein bzw. nur geringes Entzugspotenzial auf, sodass auf Basis der Datenlage vorerst kein

erkennbares Potenzial zum Aufbau eines kalten Nahwärmenetzes ersichtlich ist.

*gemäß Technikkatalog BMWK (2024)

Umsetzungsempfehlung:

Die berechneten Kennwerte schließen ein Wärmenetz im Bestand nicht aus. Relevant ist eine hohe Anschlussquote und möglicherweise der Anschluss der Ankerkunden: Kommunale Wohngebäude, Lebensmittelmarkt. Innerhalb einer Machbarkeitsstudie sollte die Wirtschaftlichkeit des Wärmenetzes berechnet werden und der Aufbau eines Sekundärnetzes im Neubaugebiet geprüft werden.

7. Zusammenfassung

Der Landkreis Fürstenfeldbruck stellt sich aktiv den Herausforderungen des Klimaschutzes, der Energiewende sowie einer nachhaltigen Energieversorgung. Mithilfe eines durch das Bayerische Staatsministerium für Wirtschaft, Landesentwicklung und Energie geförderten Energienutzungsplans wurden zukunftsweisende Maßnahmen entwickelt, die die energetische Entwicklung im Landkreis langfristig prägen sollen.

Diese Studie wurde von der ENIANO GmbH in Zusammenarbeit mit dem Landkreis Fürstenfeldbruck und seinen kreisangehörigen und regionalen Akteuren erstellt. Durch regelmäßige Treffen wurden thematische Schwerpunkte definiert und Handlungsempfehlungen entwickelt. Ziel des Plans ist es, einen umfassenden Überblick über die Energiesituation des Landkreises und seiner Kommunen zu geben und wirtschaftlich sinnvolle Maßnahmen anzustoßen, die eine regionale Wertschöpfung fördern.

Im ersten Schritt wurde eine detaillierte Energie- und Treibhausgasbilanz basierend auf den aktuellen Energieverbräuchen im Landkreis erstellt. Zur nachhaltigen Energieversorgung wurden in einem zweiten Schritt Potenziale erneuerbarer Energien analysiert. Dafür wurde die solare Strahlungsenergie in Bezug auf Photovoltaik- und Solarthermienutzung auf Dach- sowie auf Freiflächen analysiert. Ebenfalls wurden die Planungen der Kommunen und des regionalen Planungsverbands in Bezug auf Windenergie erfasst. Das Biomasse- und Biogaspotenzial wurde sowohl als kommunale Territorialbilanz errechnet, als auch in Relation zum gesamten Landkreispotenzial gesetzt. Im Wärmesektor wurden des Weiteren oberflächennahe Geothermie, Tiefe Geothermie sowie potenzielle Wärmeverbundgebiete zum Aus- und Aufbau von Wärmenetzen ermittelt. Die Ergebnisse zeigen, dass eine Vielzahl an Potenzialen besteht, die den Strom- und Wärmebedarf im Landkreis decken könnten.

Der Energienutzungsplan verdeutlicht den aktuellen Stand der Energieversorgung und gibt dem Landkreis und seinen kreisangehörigen Kommunen einen Rahmen, um weitere Maßnahmen umzusetzen.

Klimaschutz und nachhaltige Energieversorgung erfordern Engagement, bieten jedoch zugleich Chancen für regionale Entwicklung, Modernisierung der Infrastruktur und langfristige finanzielle Entlastung.

${\bf Abbildungsverzeichnis}$

Abbildung 1: Bestehende Energieinfrastruktur im Stromsektor	5
Abbildung 2: Jährlicher Zubau der Dachphotovoltaik nach Sektor bis 2023 (Datenquelle:	
Marktstammdatenregister, Stand Februar 2024)	6
Abbildung 3: Jährlicher Zubau der Stromspeicherleistung bis 2023 (Datenquelle:	
Marktstammdatenregister)	7
Abbildung 4: Bestehende Energieinfrastruktur im Wärmesektor	8
Abbildung 5: Zeitlicher Verlauf des geförderten Zubaus von Solarkollektorfläche	
(Datenquelle: BAFA, eigene Darstellung).	9
Abbildung 6: Anzahl der bestehenden Zentralfeuerungsstätten im Jahr 2022 (Datenquell	le:
Kehrbuchdaten von 2022).	10
Abbildung 7: Anzahl der Wohngebäude nach Gebäudetyp und Altersklasse (Datenquelle) :
ENIANO Gebäudekataster).	11
Abbildung 8: Schematische Darstellung zum Aufbau des gebäudescharfen Wärmekatast	
Abbildung 9: Räumliche Verteilung der Wärmebedarfsdichte im Wohngebäudesektor	
Abbildung 10: Veranschaulichung des Energieflusses vom Primär- zum	
Endenergieverbrauch. Eigene Darstellung in Anlehnung an Bayerisches Staatsministeriu	
für Wirtschaft, Landesentwicklung und Energie	15
Abbildung 11: Prozentuale Aufteilung des Endenergieverbrauchs nach Endenergieträger	
das Jahr 2022	17
Abbildung 12: Prozentuale Aufteilung der Pro-Kopf-Triebhausgasemissionen nach	
Endenergieträger für das Jahr 2022.	
Abbildung 13: Prozentuale Aufteilung des Endenergieverbrauchs nach Sektoren für das	
2022	
Abbildung 14: Gegenüberstellung von Energieverbrauch und Erzeugung in den Sektoren	
Strom, Wärme und Verkehr.	
Abbildung 15: Vergleich der erneuerbaren Energieerzeugung und des Verbrauchs im Jah	
2022	19
Abbildung 16: Anteil der erneuerbaren Energien am Bruttostromverbrauch und an der	
Wärmebereitstellung im Jahr 2022 im überregionalen Vergleich (Datenquelle für	
überregionale Werte: StMWi, BMWK)	
Abbildung 17: Zusammenhang der verschiedenen Potenzialbegriffe	21
Abbildung 18: Einsparungspotenzial im Wärmesektor für Wohngebäude mit	
Sanierungsszenario "Mittel"	
Abbildung 19: Einsparungspotenzial im Wärmesektor für das Sanierungsszenario "Hoch'	
Abbildung 20: Relatives Einsparpotenzial des Jahresheizwärmebedarfs durch Sanierung	25
Abbildung 21: Beispielgebäude mit modelliertem Dach-Photovoltaikpotenzial und	
Einstrahlungswerten pro Modul.	
Abbildung 22: Ausbaupotenzial für Dach-Photovoltaikanlagen	28
Abbildung 23: Schematische Darstellung der Zuständigkeiten der räumlichen Planung.	
Graphik in Anlehnung an Regionalen Planungsverband München	
Abbildung 24: Potenzial zur Energieerzeugung aus Biomasse	34

Abbildung 25: Potenzial zur Energieerzeugung durch Biogasanlagen	36
Abbildung 26: Summiertes Potenzial zur Energieerzeugung aus Biomasse im Landkreis	
Fürstenfeldbruck	37
Abbildung 27: Summiertes Potenzial zur Energieerzeugung aus Biogas im Landkreis	
Fürstenfeldbruck	37
Abbildung 28: Kommunale Liegenschaften in räumlicher Nähe zum Kanalnetz	39
Abbildung 29: Potenzielle Wärmenetzgebiete entlang von Kanälen > DN800	41
Abbildung 30: Darstellung der erhobenen Kläranlagen	43
Abbildung 31: Der typische Aufbau eines Erdwärmekollektors (Bildquelle: Interreg Alpine	
Space Programme, Projekt GRETA)	46
Abbildung 32: Potenzialkarte für Erdwärmekollektoren	47
Abbildung 33: Typischer Aufbau einer Grundwasserwärmepumpe mit Förder- und	
Schluckbrunnen (Bildquelle: Interreg Alpine Space Programme, Projekt GRETA)	48
Abbildung 34: Potenzialkarte für Grundwasserwärmepumpen	49
Abbildung 35: Typischer Aufbau einer Erdwärmesonde (Bildquelle: Interreg Alpine Space	
Programme, Projekt GRETA)	50
Abbildung 36: Potenzialkarte für Erdwärmesonden	51
Abbildung 37: Horizonttemperatur entlang des Oberjuras (Datenquelle: GeotIS)	53
Abbildung 38: Erteilte Aufsuchungserlaubnis im Landkreis Fürstenfeldbruck (Datenquelle	:
Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie, Referat 86	3,
FstB)	54
Abbildung 39: Wärmedichtekategorien im Betrachtungsgebiet	56

Hinweis: Alle nicht mit einer Quellenangabe versehenen Abbildungen sind eigene Darstellungen.

Tabellenverzeichnis

Tabelle 1: Netzbetreiber der Energieinfrastruktur in der Gemeinde Althegnenberg	4
Tabelle 2: Erneuerbare Stromerzeugung und Anteil am Gesamtverbrauch	6
Tabelle 3: Einsparpotenzial des Stromsektors.	22
Tabelle 4: Einsparpotenzial im Jahresheizwärmebedarf durch Sanierung	25
Tabelle 5: Kategorisierung der Distanzen zum Kanalnetz	39
Tabelle 6: Liste der identifizierten kommunalen Liegenschaften in räumlicher Nähe zum	
Kanalnetz	40
Tabelle 7: Liste der erhobenen Kläranlagen	43
Tabelle 8: Klassifizierung der Wärmedichtewerte in Eignungskategorien	56